Найти в Дзене
СкопусБукинг

Китайский журнал в Скопус, второй квартиль (искусственный интеллект), Computational Visual Media

Уважаемые коллеги, доброго времени суток! Представляем вам китайское научное издание Computational Visual Media. Журнал имеет второй квартиль, находится в открытом доступе, издается в Tsinghua University Press, его SJR за 2020 г. равен 0,612, печатный ISSN - 2096-0433, электронный - 2096-0662, предметные области - Искусственный интеллект, Компьютерная графика и дизайн, Машинное зрение и распознавание образов. Вот так выглядит обложка:

Редактором является Ши-Мин Ху, контактные данные - shimin@tsinghua.edu.cn.

-2

Дополнительные публикационные контакты - JosephineDenise.Elmedo@springernature.com, patricia.hofrichter@springer.com, na.xu@springer.com.

Это рецензируемый журнал с открытым доступом, публикуемый ежеквартально издательствами Tsinghua University Press и Springer под брендом SpringerOpen. Он публикует оригинальные высококачественные исследовательские работы и важные обзорные статьи о новых идеях, методах и системах, имеющих отношение к визуальным медиа. Журнал публикует статьи, которые посвящены, но не ограничиваются следующими областями:

• Обработка 3D-визуальных медиа;

• Классификация и композиция визуальных медиа;

• Познание визуальных медиа;

• Безопасность контента для визуальных медиа;

• Улучшение и повторная визуализация визуальных медиа;

• Геометрические вычисления для изображений и видео;

• Интерактивное редактирование визуальных медиа;

• Машинное обучение для визуальных медиа;

• Вычисления в социальных сетях;

• Понимание визуальных медиа;

• Поиск визуальных медиа;

• Визуализация и визуальная аналитика.

Адрес издания - https://www.springer.com/journal/41095

Пример статьи, название - Image smoothing based on global sparsity decomposition and a variable parameter. Заголовок (Abstract) - Smoothing images, especially with rich texture, is an important problem in computer vision. Obtaining an ideal result is difficult due to complexity, irregularity, and anisotropicity of the texture. Besides, some properties are shared by the texture and the structure in an image. It is a hard compromise to retain structure and simultaneously remove texture. To create an ideal algorithm for image smoothing, we face three problems. For images with rich textures, the smoothing effect should be enhanced. We should overcome inconsistency of smoothing results in different parts of the image. It is necessary to create a method to evaluate the smoothing effect. We apply texture pre-removal based on global sparse decomposition with a variable smoothing parameter to solve the first two problems. A parametric surface constructed by an improved Bessel method is used to determine the smoothing parameter. Three evaluation measures: edge integrity rate, texture removal rate, and gradient value distribution are proposed to cope with the third problem. We use the alternating direction method of multipliers to complete the whole algorithm and obtain the results. Experiments show that our algorithm is better than existing algorithms both visually and quantitatively. We also demonstrate our method’s ability in other applications such as clip-art compression artifact removal and content-aware image manipulation. Keywords: image smoothing; texture removal; global sparse decomposition; Bessel method