Найти в Дзене

Чем автотрансформатор отличается от трансформатора и для чего он нужен

Оглавление

Для повышения или понижения напряжения и гальванической развязки цепей используются трансформаторы. Обычный трансформатор состоит из двух и более обмоток не соединённых друг с другом, расположенных на одном сердечнике.

Но изменить величину напряжения можно и с помощью другого устройства — автотрансформатора, принцип действия и сферы применения которого мы и рассмотрим сегодня.

Отличия от трансформатора

Прежде чем перейти к разговору об автотрансформаторе, давайте вспомним как устроен обычный трансформатор. Он состоит из сердечника, на котором расположены две или больше обмоток. Обмотка, которая подключается к источнику питания называется первичной (w1), а обмотка, к которой подключается нагрузка — вторичной (w2).

Рисунок 1 — электромагнитная схема трансформатора
Рисунок 1 — электромагнитная схема трансформатора

При подключении первичной обмотки к источнику переменного тока, создаётся магнитный поток Ф и замыкается в сердечнике. Так как вторичная обмотка намотана на том же сердечнике, то магнитный поток, пересекая её витки, наводит в них ЭДС. При подключении ко вторичной обмотке нагрузки Zн индуцированная ЭДС порождает электрический ток. Ток вторичной обмотки влияет на ток первичной обмотки так, что при увеличении тока нагрузки (тока во вторичной обмотке) увеличивается ток в первичной.

Так как индуктированная ЭДС в каждом витке одинаковая, то напряжение первичной и вторичной обмоток зависят только от соотношения количества витков между ними, а это соотношение называется коэффициентом трансформации: k=w1/w2.

Первичная и вторичная обмотки трансформатора не имеют электрической связи и мощность из одной обмотки в другую передаётся электромагнитным путём, а магнитопровод (сердечник) на котором они расположены усиливает индуктивную связь между обмотками.

Рисунок 2 — схема трансформатора
Рисунок 2 — схема трансформатора

Вернёмся к теме, согласно п. 2.25 ГОСТ 16110-82 автотрансформатор — это трансформатор, две или более обмоток которого гальванически связаны так, что они имеют общую часть.

Фраза «гальванически связаны» — значит, что между первичной и вторичной обмоткой есть электрический контакт. Для наглядности ещё раз изобразим обычный трансформатор и пронумеруем выводы его обмоток: начало и конец первичной — цифрами 1 и 2, а вторичной — цифрами 3 и 4.

Рисунок 3 — схема трансформатора
Рисунок 3 — схема трансформатора

Если соединить вывод 2 с выводом 3 (рисунок 4 — а), то мы получим автотрансформатор. Но такого обозначения на схеме вы не встретите нигде, обычно их изображают как на рисунке 4 — б.

Рисунок 4 — автотрансформатор: а) соединение обмоток для сравнения с трансформатором; б) обозначение на схеме
Рисунок 4 — автотрансформатор: а) соединение обмоток для сравнения с трансформатором; б) обозначение на схеме

На рисунке 5 видим, что обмотка 1-4 первичная, так как к ней подключён источник питания. А вот с обмоткой 3-4 дело обстоит интереснее: так как к ней подключена нагрузка то логично её называть вторичной, но при этом она является частью первичной обмотки.

Примечание. У автотрансформаторов часть от точки подключения к сети до точки подключения нагрузки называют «последовательной», потому что она фактически соединяется последовательно с нагрузкой, а часть обмотки к которой подключается нагрузка называют «общей». Но далее в статье предлагаю называть их «первичной» и «вторичной» обмотки для поддержания аналогии с обычными трансформаторами, по той логике, что нагрузка подключается ко вторичной обмотке, а питание к первичной.

В зависимости от конкретного случая источник переменного тока и нагрузку подключают к разным выводам, например, если подключить источник питания к выводам 1 и 4, а нагрузку к выводам 3 и 4 — мы получим понижающий автотрансформатор. Если подключить питание к выводам 3 и 4, а нагрузку к 1 и 4 — получим повышающий автотрансформатор.

Принцип действия

Рассмотрим принцип работы автотрансформатора, и предположим, что у нас понижающий автотрансформатор к которому питание и нагрузка подключены как изображено на рисунке 4 — в.

Электрический ток, протекая по обмотке 1-4 автотрансформатора, создаёт в сердечнике переменный магнитный поток, который индуктирует в обмотке ЭДС E. При этом ЭДС каждого витка одинакова, и ЭДС во вторичной обмотке E2 будет пропорциональна количеству её витков (w2), относительно полного количества витков автотрансформатора (w1+w2), то есть между точками 1 и 4.

Соотношения этих ЭДС можно записать так:

E/E2=W/w2,

где E – ЭДС индуктированная во всей обмотке, E2 – ЭДС вторичной обмотки, W – общее количество витков первичной и вторичной обмотки (W=w1+w2).

Кстати отношение W/w2 называют коэффициентом трансформации и обозначают латинской буквой k, то есть k=W/w2.

То есть если у нашего автотрансформатора всего 100 витков, при этом нагрузка подключается к последним 30 виткам, то если мы подадим на концы катушки переменное напряжение U1=10 вольт, то на нагрузке будет U2=3 вольта.

Рисунок 5 — электромагнитная схема, напряжения и токи в обмотках автотрансформатора
Рисунок 5 — электромагнитная схема, напряжения и токи в обмотках автотрансформатора

Особенности: ток первичной и вторичной обмоток, мощности

В трансформаторе мощность от источника питания и первичной обмотки передаётся во вторичную обмотку и нагрузку через магнитное поле, пронизывающее сердечник. Электрической связи между обмотками нет. У автотрансформатора обмотки связаны друг с другом, даже более того, «вторичная» обмотка – это часть первичной обмотки. Поэтому мощность от источника питания в нагрузку передаётся и через электрическую, и через магнитную связь.

Из этого вытекает несколько особенностей, и для начала рассмотрим токи в обмотках автотрансформатора. Ток первичной , вернее последовательной части обмотки обозначим как I1, ток нагрузки — I2, а ток, протекающий во вторичной обмотке — I12.

Если составить по первому правилу Кирхгофа уравнение токов, для точки соединения обмоток 2-3, то ток нагрузки I2 состоит из суммы токов I1 и I12:

I2=I1+I12

Выразим ток вторичной обмотки I12:

I12=I2-I1

То есть ток вторичной обмотки равен разницы тока нагрузки и тока первичной обмотки.

И что это нам даёт?

Допустим, к сети напряжением 220В нужно подключить нагрузку с номинальным напряжением 110В, мощность которой составляет 1 кВт.

Для этой задачи можно использовать трансформатор с коэффициентом трансформации 2, давайте рассчитаем номинальный ток нагрузки (вторичной обмотки):

I2=Pн/U2=1000/110=9,1 А.

Ток первичной обмотки, потребляемый трансформатором из сети 220В составит:

I1=Pн/Uс=1000/230=4,34 А.

Таким образом ток вторичной обмотки составит 9,1А, а ток первичной – 4,34 А.

При использовании для этой задачи автотрансформатора с коэффициентом трансформации 2, из сети будет потребляться ток:

I1=Pн/Uс=1000/220=4,34 А.

Ток нагрузки будет таким же, как и в предыдущем случае:

I2=Pн/U2=1000/110=9,1 А.

А вот ток вторичной обмотки:

I12=I2-I1=9,1-4,34=4.76 А

То есть в этом конкретном случае и первичную и вторичную обмотки можно намотать одинаковым проводом, а при использовании трансформатора для вторичной обмотки понадобился бы провод, условно, в два раза большего сечения.

Для большей наглядности давайте посчитаем то же самое, только представим, что у нас есть нагрузка рассчитанная на другое напряжение, например, на U2=175 вольт (величина взята для примера). В этом случае коэффициент трансформации автотрансформатора будет меньше — 1,31. Потребляемый из сети ток останется таким же:

I1=Pн/Uс=1000/220=4,34 А

Рассчитаем ток нагрузки:

I2=Pн/U2=1000/175=5,71 А

Тогда ток вторичной обмотки составит:

I12=I2-I1=5,71-4,34=1.37 А

При использовании трансформатора для этой же задачи ток вторичной обмотки составил бы:

I2=I1×k=5.6 А

Мы видим разницу между токами вторичной обмотки в 5 раз. Это позволяет намотать вторичную обмотку проводом меньшего сечения, чем пришлось бы использовать во вторичной обмотке обычного трансформатора. При этом чем меньше коэффициент трансформации, тем меньше ток во вторичной обмотке автотрансформатора. При коэффициентах трансформации больше 2 это преимущество нивелируется.

В этом и заключается первое преимущество автотрансформатора перед трансформатором.

Примечание — в расчетах я не учитывал потери, коэффициенты мощности и прочее, их цель проиллюстрировать разницу между устройствами, а не рассчитать реальную электрическую цепь.

Для автотрансформаторов выделяют проходную и расчётную мощности, давайте разберёмся в чём их отличие и на что они влияют.

Как уже неоднократно отмечалось, у трансформатора вся мощность из первичной обмотки во вторичную передаётся с помощью магнитного поля. При этом сердечник подбирается по мощности трансформатора, то есть чем мощнее трансформатор – тем больше должен быть сердечник.

У автотрансформатора мощность из сети передаётся в нагрузку не только за счёт магнитной связи, но и за счёт электрической связи между обмотками. Поэтому выделяют несколько видов мощности.

Проходная мощность Sпр — это произведение выходного напряжения на ток нагрузки:

Sпр=U2×I2

Расчётная мощность Sрасч (она же трансформаторная или типовая) — это мощность, которая передаётся из сети в нагрузку магнитным полем, и составляет лишь часть от проходной. Оставшаяся часть от проходной мощности передаётся в нагрузку с помощью электрической связи, обозначим её как Sэ.

Разложим проходную мощность на составляющие. Так как I2=I1+I12, то формула проходной мощности примет вид:

Sпр=U2×(I1+I12)=U2×I1+U2×I12=Sэ+Sрасч

Соответственно:

Sэ=U2×I1

Sрасч=U2×I12

Расчётная мощность так называется, потому что именно её используют при расчётах трансформатора. Что это нам даёт?

В рассмотренном выше примере через сердечник трансформатора передавался 1 кВт мощности, а у автотрансформатора через магнитное поле передавалось всего:

Sрасч=U2×I12=175×1.31=240 Вт

Что в 5 раз меньше, чем у трансформатора. Так как мощность — это основной критерий выбора сердечника, то площадь сердечника автотрансформатора будет меньше, чем у трансформатора аналогичной мощности.

Но как и в случае с сечением провода, чем больше коэффициент трансформации, тем большая мощность передаётся магнитным полем, и наоборот — при маленьких коэффициентах трансформации больше мощности передаётся через электрическую связь. Зависимость отношения Sэ к Sпр от коэффициента трансформации изображена на рисунке 6. Таким образом при больших коэффициентах трансформации выгода от использования автотрансформаторов вместо трансформаторов исчезает.

Рисунок 6 — зависимость Sэ/Sпр от коэффициента трансформации
Рисунок 6 — зависимость Sэ/Sпр от коэффициента трансформации

То есть наиболее целесообразно применять автотрансформаторы вместо трансформаторов при коэффициенте преобразования меньше чем 2.

Подведём итоги

На практике с автотрансформаторами мы сталкиваемся довольно часто, например, в релейных и электронных (симисторных) стабилизаторах напряжения они используются для повышения и понижения напряжения.

Рисунок 7 — блок схема релейного стабилизатора
Рисунок 7 — блок схема релейного стабилизатора

Трёхфазные автотрансформаторы нашли применение в сетях высокого напряжения для связи сетей с «соседними» напряжениями — 110 и 220, 220 и 500 кВ.

Для проведения испытаний, а также настройки электрооборудования используются лабораторные автотрансформаторы – ЛАТРы. Это автотрансформаторы, в которых вместо отвода от обмотки для подключения нагрузки используется скользящий контакт, на рисунке 8 он обведён зелёным цветом, типа токосъёмной щётки. Изменяя положение скользящего контакта, вы подключаете нагрузку к разным виткам обмотки, другими словами – вы можете регулировать напряжение.

При этом с помощью большинства ЛАТРов можно как понижать, так и повышать напряжение. Кстати ЛАТР – это основа электромеханических, или, как их ещё называют, сервоприводных стабилизаторов напряжения.

Рисунок 8 — ЛАТР: а) внешний вид, б) внутреннее устройство (красным выделен скользящий контакт, к которому подключается нагрузка)
Рисунок 8 — ЛАТР: а) внешний вид, б) внутреннее устройство (красным выделен скользящий контакт, к которому подключается нагрузка)

При одинаковой мощности преимущества автотрансформаторов перед трансформаторами заключаются в пониженном расходе меди и электротехнической стали для сердечника. При этом КПД автотрансформаторов достигает 99,7%. Но преимущества тем больше выражены, чем больше Sэ, и меньше расчётная часть Sрасч проходной мощности, то есть при низких коэффициентах трансформации. И все преимущества исчезают при больших коэффициентах трансформации.

Применение автотрансформаторов для преобразования в сетях высокого напряжения улучшает КПД энергосистем, снижает стоимость передачи энергии, но приводит к увеличению токов короткого замыкания.

Кроме этого, у автотрансформаторов есть серьёзный недостаток — гальваническая связь с питающей сетью. Это значит, что напряжение на вторичной обмотке может оказаться таким же, как на первичной. Поэтому с целью обеспечения электробезопасности использование автотрансформаторов для питания переносных светильников сверхнизкого напряжения запрещается (ПТЭЭП п.2.12.6 и ряд других документов), а также для питания другого оборудования, на котором работают люди. По этой же причине нельзя использовать автотрансформаторы в качестве силовых для понижения 6-10 кВ до 0,4 кВ.

Из-за наличия электрической связи между обмотками вытекает ещё один недостаток – необходимо выполнять изоляции обеих обмоток на большее напряжение, по сравнению с обычными трансформаторами.