Найти тему
ServerNews

NVIDIA TAO, Triton и Fleet Command помогут компаниям в выборе, дообучении, оптимизации и развёртывании моделей ИИ

«Путь к созданию предприятия, основанного на искусственном интеллекте, не должен быть долгим или трудным, если вы знаете, как использовать предварительно обученные модели и инструменты, такие как NVIDIA TAO и Fleet Command» , — заявил Адель Эль-Халлак (Adel El-Hallak), директор по управлению продуктами NGC.

По его словам, теперь компаниям не придётся проектировать и обучать собственную нейронную сеть с нуля, так как можно будет выбрать одну из множества доступных в каталоге NGC. Предлагаемые NVIDIA модели, охватывают широкий спектр задач ИИ — от компьютерного зрения и разговорного ИИ до понимания естественного языка и многого другого.

Многие модели в каталоге предлагаются с расширенной информацией о наборе данных для обучения, о частоте использования и с прогнозом результатов использования. Это обеспечивает прозрачность и уверенность в том, что вы выбираете подходящую модель для своего варианта использования. Выбрав модель, клиент сможет её настроить в соответствии с конкретными потребностями с помощью NVIDIA TAO.

-2

С помощью NVIDIA Transfer Learning Toolkit предобученную модель из каталога NGC можно будет дообучить на небольших наборах данных, которые есть у пользователей, чтобы индивидуально подстроить модели под нужды клиента. Кроме того, TAO предлагает и Federated learning (федеративное обучение), которое позволяет безопасно обучить модель на данных от различных пользователей внутри зашифрованных анклавов в GPU, не открывая их никому из участников процесса.

-3

После точной настройки модели её необходимо оптимизировать для развёртывания — сделать более компактной без ущерба для качества и возможности эффективного функционирования на целевой платформе клиента, будь то массив графических процессоров в сервере или робот с приводом от Jetson в заводском цехе. С помощью NVIDIA Triton пользователи смогут выбрать оптимальную конфигурацию для развёртывания, независимо от архитектуры модели, используемой инфраструктуры, целевого процессора или графического ускорителя, на котором она будет работать.

-4

После того, как модель оптимизирована и готова к развёртыванию, пользователи могут легко интегрировать её с любой инфраструктурой, которая соответствует их сценарию использования или отрасли. На завершающем этапе с выбранной платформой пользователи смогут запустить NVIDIA Fleet Command для развёртывания и управления приложением ИИ на различных устройствах с графическим процессором.

-5

Fleet Command объединяет сертифицированные NVIDIA серверы, развёрнутые на границе сети, с облаком, используя протоколы сквозной безопасности для защиты данных приложений и интеллектуальной собственности. Данные передаются между периферией и облаком в полностью зашифрованном виде. А перед развёртыванием приложения сканируются на наличие вредоносных программ и уязвимостей.

-6

Fleet Command и элементы TAO уже используются на складах, в розничной торговле, в больницах и в производственных цехах. В числе их пользователей такие компании, как Accenture, BMW и Siemens Industrial. Основные компоненты TAO, включая инструментарий Transfer Learning Toolkit и федеративное обучение, на данный момент уже доступны клиентам.