Найти в Дзене
Лампа Электрика

5 схем простых стабилизаторов напряжения

Оглавление

Практически каждый электронный прибор требует для своей работы питания. Одни схемы некритичны к величине и стабильности питающего напряжения, но большинство все же требует для своей работы напряжений строго заданной величины. Сегодня мы поговорим о простых стабилизаторах  и разберемся, какими они бывают и как работают.

Простейший параметрический

В основу параметрических стабилизаторов положено свойство сильной нелинейности вольтамперной характеристики (ВАХ) некоторых полупроводниковых приборов. Рассмотрим принцип работы простейшего параметрического стабилизатора, собранного на стабилитроне.

Параметрический стабилизатор напряжения на стабилитроне
Параметрический стабилизатор напряжения на стабилитроне

Как известно, стабилитрон имеет участок ВАХ, на котором напряжение на полупроводнике почти не зависит от тока через него. Нижний порог этого участка называют Iст. min, верхний – Iст.max. При подаче на схему напряжения питания Uвх, через стабилитрон начинает течь ток, который задается токоограничивающим (балластным) резистором R1. Если он находится в пределах Iст. min - Iст. max, то на выводах стабилитрона установится определенное напряжение Uст, которое зависит от типа полупроводникового прибора.

При подключении нагрузки (на схеме для наглядности ее роль исполняет резистор R2) ситуация несколько меняется. Ток, протекающий через балластный резистор, делится. Часть его продолжает течь через стабилитрон, часть питает нагрузку. В результате ток через стабилитрон уменьшается и при достаточно мощной нагрузке может упасть ниже пределах Iст. min.

В этом случае полупроводник выйдет из режима стабилизации и перестанет исполнять свои функции. Таким образом, подобные схемы годятся лишь для питания маломощных устройств, потребляющих единицы, максимум несколько десятков миллиампер. Их используют, к примеру, для получения опорных напряжений.

Вполне очевидно, что напряжение Uвх должно быть выше Uст. В противном случае стабилитрон не сможет выйти на рабочий режим. Обычно величину Uвх выбирают не менее чем на 3-5 В выше Uст.

А теперь попробуем собрать практическую схему стабилизатора на 12 В, используя стабилитрон КС512А. Смотрим на его характеристики:

  • Uст – 12 В (при токе Iст. 5 мА);
  • Iст.min – 1 мА;
  • Iст.max – 67 мА.

Входное напряжение выберем равным 15 В. Ток через стабилитрон с отключенной нагрузкой выберем как можно ближе к максимальному, но с некоторым запасом – 50 мА. Запас этот нужен на случай, если входное напряжение повысится – оно ведь нестабилизированное. Исходя из этого, рассчитываем номинал балластного резистора по формуле:

R=(Uвх- Uвых)/Iстаб

где:

  • R - сопротивление балластного резистора R1, Ом;
  • Uвх - входное напряжение, В;
  • Uвых - выходное напряжение, В;
  • Iстаб - ток через стабилитрон, А.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом. Какой ток в нагрузку сможет отдать такая схема? Как мы выяснили, при подключении нагрузки ток через балластный резистор будет составлять Iбал=Iстаб+Iнагр, а значит, Iстаб=Iбал–Iнагр. Нижний передел режима стабилизации выбранного нами полупроводника – 1 мА. Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА. При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

Включаем калькулятор и считаем: R1=(15-12)/0.05=60 Ом.

Значит, наш стабилизатор сможет отдать в нагрузку порядка 40-45 мА. При этом ток через стабилитрон упадет до 5-10 мА. Дальнейшее повышение Iнагр приведет к еще большему уменьшению Iстаб, что может вызвать неустойчивую работу стабилитрона, скажем, при уменьшении входного напряжения, которое, как мы помним, нестабилизировано.

На самом деле все на так просто, поскольку напряжение стабилизации стабилитрона зависит от тока через него. Не особо сильно, но зависит. При динамичной и особенно большой нагрузке напряжение на выходе нашей схемы станет существенно изменяться и будет мало похоже на стабильное. Таким образом, более-менее нормальную работу такого стабилизатора можно получить при отдаче в нагрузку много меньших токов – 1-2 десятка мА.

Параметрический с транзисторным ключом

В предыдущем разделе мы выяснили, что простейший стабилизатор имеет существенный недостаток – он не может обеспечить питанием более-менее мощную нагрузку. Кроме того, коэффициент стабилизации (зависимость выходного напряжения от входного) у предыдущей схемы относительно небольшой. Выйти из положения можно при помощи дополнительного элемента – транзистора.

Схема параметрического стабилизатора с транзисторным ключом
Схема параметрического стабилизатора с транзисторным ключом

Как видно из схемы, стабилитрон теперь питается от «личного» токоограничивающего резистора R1, ток через который не зависит от тока, протекающего через нагрузку. Стабилизированное стабилитроном D1 напряжение прикладывается к базе транзистора Т1. В результате на нагрузке устанавливается стабильное напряжение, величина которого составит разницу напряжений стабилизации стабилитрона и падения  на n-p переходе транзистора. Uвых=Uст-Uбэ. 

То есть если мы хотим получить к, примеру, выходное напряжение 12 В, то необходимо взять стабилитрон с большим (порядка 0.6 – 1.3 В – зависит от типа применяемого транзистора) напряжением стабилизации. К примеру, Д814Д (Uст. – 13 В). Но, что важно, такое решение существенно улучшает коэффициент стабилизации схемы, которая складывается из произведения коэффициента стабилизации стабилитрона и коэффициента передачи транзистора.

Главное же достоинство подобной схемы – большой отдаваемый ток, величина которого зависит от мощности транзистора. Это позволяет строить относительно простые стабилизаторы с неплохими характеристиками, способными выдавать токи в единицы и даже десятки ампер.

На интегральном стабилизаторе

Но и это не предел. Существенно улучшить характеристики источника питания можно применением  специализированных микросхем – так называемые интегральных стабилизаторов. Схема, изображенная ниже, не только имеет хороший коэффициент стабилизации, но и оснащена защитой от перегрузки, перегрева и короткого замыкания (все в составе микросхемы). Это уже полноценный стабилизатор.

Стабилизатор напряжения на микросхеме КР142ЕН5А (зарубежный аналог IL7805C)
Стабилизатор напряжения на микросхеме КР142ЕН5А (зарубежный аналог IL7805C)

Ну и, конечно, при использовании микросхем конструкция БП существенно упрощается. Создание ее требует минимума дополнительных элементов и не нуждается в расчетах и регулировке. Достаточно выбрать тип микросхемы и можно получить нужное выходное напряжение.

Ток, отдаваемый такими микросхемами, может достигать нескольких ампер (зависит от типа). Но если его недостаточно, то можно использовать транзисторный ключ, как мы это делали в случае со стабилитроном.

Мощный стабилизатор напряжения 12 В на микросхеме и транзисторе
Мощный стабилизатор напряжения 12 В на микросхеме и транзисторе
Если подключить вывод 2 микросхемы к минусовому проводу не напрямую,  а через стабилитрон, то выходное напряжение схемы будет складываться из напряжений стабилизации микросхемы и стабилитрона.
Схема с повышенным напряжением стабилизации
Схема с повышенным напряжением стабилизации

Ну и в завершении хотелось бы отметить один существенный недостаток вышеприведенных схем. Все они являются линейными или непрерывными стабилизаторами, в которых регулирующий элемент работает в линейном режиме. Такое решение достаточно просто, но имеет низкий КПД – ведь вся «лишняя» мощность бесполезно рассеивается на этом элементе.

К примеру, если построить БП на интегральном стабилизаторе КР142ЕН5А (см. схему выше) и выбрать Uвх. 15 В, то при токе в нагрузке 2 А на самой микросхеме будет рассеиваться мощность 2 * 10 = 20 Вт. Это вдвое больше полезной мощности, питающей саму нагрузку. То есть КПД такой схемы составить чуть более 30%.

В заключение. Существенно повысить КПД блока питания можно заставив работать регулирующий элемент в ключевом режиме, применив широтно-импульсную модуляцию (ШИМ). Но поскольку у нас разговор о простых стабилизаторах, а схемы с широтно-импульсным управлением относительно сложны, то здесь мы их рассматривать не будем.