Печи сухого способа производства примерно в два раза короче печей мокрого способа при равной или даже большей производительности. Современные мощные печи этого способа имеют размеры: 6,4/7,0×95 м, 5×75 м и производительность 25 т/ч и 75 т/ч соответственно. Уменьшение длины печи связано с двумя основными факторами: во-первых, в печах сухого способа в принципе отсутствует зона сушки, во-вторых, часть процессов выносится из печи в запечные теплообменные устройства (циклонные теплообменники, реактор-декарбонизатор или кальцинатор).
В ряде стран Западной Европы и Японии, ввиду большого расхода топлива мокрый способ полностью отсутствует, все 100% цемента выпускается по экономичному сухому способу. В США, Канаде, многих странах превалирует сухой способ, по которому работают 60-80% заводов.
В печах сухого способа выделяют все зоны тепловых преобразований материала как в печах мокрого способа, кроме зоны сушки.
Эффективное использование теплоты во вращающихся печах возможно только при установке системы внутрипечных и запечных теплообменных устройств. Внутрипечные теплообменные устройства имеют развитую поверхность, которая либо всё время покрыта материалом, непосредственно соприкасающимся с газами, либо работает как регенератор, воспринимаю теплоту от газов и передавая ее материалу. Эти устройства увеличивают поверхность теплообмена между газами и материалами также потому, что, уменьшая скорость движения материала, повышают коэффициент заполнения печи.
В основу конструкций печей сухого способа производства с циклонными теплообменниками положен принцип эффективного теплообмена между отходящими из печи дымовыми газами и частицами сырьевой муки, находящимися во взвешенном состоянии. Уменьшение размера частиц обжигаемого материала и увеличение его удельной поверхности, а также максимальное использование всей поверхности частиц для контакта с теплоносителем интенсифицируют теплообмен между ними. Этот способ передачи теплоты обеспечивает быстроту и равномерность нагрева и поэтому весьма эффективен. Во взвешенном состоянии при достижении температуры диссоциации декарбонизация СаСО3 протекает также гораздо быстрее, чем при обжиге шихты в слое. Но все процессы, связанные с непосредственным контактом частиц-реагентов между собой (твёрдофазовые реакции, спекание), наоборот, замедляются.
Самые первые вращающиеся печи работали с 4-мя ступенями циклонных теплообменников.
Нумерация циклонов начинается сверху по направлению движения материала сверху вниз. Сырьевая мука в системе циклонных теплообменников движется навстречу отходящих из вращающейся печи газов температурой 900 - 1100 С. Средняя скорость движения газов в газоходах составляет 15 - 20 м/с, что значительно выше скорости движения частиц сырьевой муки. Сырьевая мука поступает в газоход между верхними I и II ступенями циклонов, увлекается газовым потоком и переносится в циклонный теплообменник I ступени. Поскольку диаметр циклона намного больше диаметра газохода, скорость газового потока резко снижается, и частицы выпадают из него. Осевший в циклоне материал через затвор - мигалку поступает в газоход, соединяющий II и III ступени, а из него выносится газами в циклон II ступени. В дальнейшем материал движется в газоходах и циклонах III и IV ступеней. Таким образом, сырьевая мука опускается вниз, проходя последовательно циклоны и газоходы всех ступеней, начиная относительно холодной (I) и кончая горячей (IV). В то же время, по мере повышения температуры газов и материала свойства последнего изменяются, и изменяются более радикально с появлением жидкой фазы внутри печи. Диаграмма температур материала и отходящих газов в процессе обжига клинкера демонстрирует , что наибольшая разница температур между газами и материалом существует на стадии обжига во вращающейся печи.