Найти тему

Машинное обучение в энергетике, или не только лишь все могут смотреть в завтрашний день

Точное предсказание будущих событий — перспективная и интересная задача во многих сферах: от прогноза погоды до финтеха (котировки акций, курсы валют). Машинное обучение уже сегодня позволяет значительно сократить время и трудозатраты на принятие управленческих решений.

Наша Data Science команда в НОРБИТ около полугода экспериментировала с использованием различных моделей машинного обучения для решения задач по классификации и регрессии, и по оптимизации бизнес-процессов в сфере b2b. Но когда появилась задача по предсказанию временных рядов, оказалось, что доступных материалов на эту тема в сети недостаточно для разработки быстрого решения.

Суть задачи заключалась в том, чтобы с максимальной точностью (средняя абсолютная ошибка в процентах, или MAPE < 3%) предсказывать почасовое потребление целого города на следующие трое суток суток (72 часа) для нужд одной крупной электрогенерирующей компании.

Максимальная допустимая ошибка в 3% — это очень высокий показатель по точности прогнозов. До применения машинного обучения ошибка находилась в пределах 3-23%, что напрямую приводило к финансовым убыткам, так как при недостаточной выработке электрической энергии дополнительные мощности необходимо было покупать на оптовом рынке электроэнергии (что сильно дороже собственной выработки), при перепроизводстве — продавать на рынке дешевле, чем могли бы продать городу. Также негативным эффектом отклонения плановой нагрузки от фактической является изменение частоты переменного тока в сети.

Достижению высокой точности прогнозирования мешают много факторов, например, при внезапном повышении температуры люди сразу тянутся за пультами от кондиционеров, при понижении — достают с антресолей обогреватели; во время праздников или больших футбольных матчей включают телевизоры и т.д. Если некоторые события цикличны и потенциально предсказуемы, то другие — совершенно нет. Допустим, внезапно по причине аварии перестал работать сталелитейный цех и все прогнозы превратились в тыкву (в нашем целевом городе обошлось без крупных производственных предприятий). Был довольно интересный пример проблемы при построении прогнозов в энергетике, когда один из всплесков изменений в объеме вырабатываемой электроэнергии был вызван тем, что корабль сел на мель на озере, и капитан договорился с владельцами гидроэлектростанций, чтобы они уменьшили сброс воды. Естественно, что модель машинного обучения не смогла предугадать это событие на основании накопленных исторических данных.

Полный текст на Хабре