Найти тему
IEK GROUP

Защита дома от молнии за 4 шага

1 млрд вольт, 500 тыс ампер — это все молния⚡ Ударит — мало не покажется, так что принимаем меры, чтобы этого избежать — молниезащиту. Мы, в IEK GROUP, знаем об этом если не все, то многое и поможем разобраться, как защититься от прямых ударов ⚡

Комплексная молниезащита состоит из двух частей:

❗ внешней системы, включающей молниеприёмники, токоотводы, заземлители, которая принимает разряд молнии в объект или предотвращает с вероятностью до 98 % последствия, связанные с прямым ударом. Может быть пассивного (традиционный молниеотвод) или активного (перехватывающего молнию) типа;

❗ внутренней системы, которая защищает от вторичных воздействий молнии и состоит из элементов экранирования, уравнивания потенциалов, устройств защиты от импульсных перенапряжений (УЗИП).

А чтобы правильно собрать все воедино, нужно сделать 4 обязательных шага.

Шаг первый: оптимальная трассировка

-2

При проектировании молниезащиты важно обратить внимание на ее расположение относительно инженерных сетей здания. Если рядом с заземлителем проходят подземные коммуникации, то на небольших расстояниях они получают потенциал от заземлителя и играют роль проводника, принимая на себя часть разряда молнии. Передача высокого напряжения особо сильна в случае трубопроводов, выполненных из труб с хорошо проводящей жидкостью внутри.

На рис. 1 видно, что даже при расстоянии 15 метров потенциал составит около 15 % от напряжения на токоотводе. Согласно закону Ома,

-3

при токе молнии 20 кА и сопротивлении 10 Ом потенциал на заземлителе составит 200 кВ, а на расстоянии 15 м от него будет приблизительно равен 30 кВ. Поэтому основной принцип при выборе оптимальной трассировки наземных и подземных электрических цепей объекта – максимально удалить коммуникации от заземлителей молниеотводов.

Рис. 1. Распределение потенциала в окрестности заземлителя, состоящего из трёх вертикальных стержней длиной по 3 м, расставленных по прямой с шагом 5 м и соединённых горизонтальной полосой на глубине 0,5 м, где φ — потенциал в заданной точке, UR — напряжение на заземлителе.
Рис. 1. Распределение потенциала в окрестности заземлителя, состоящего из трёх вертикальных стержней длиной по 3 м, расставленных по прямой с шагом 5 м и соединённых горизонтальной полосой на глубине 0,5 м, где φ — потенциал в заданной точке, UR — напряжение на заземлителе.

Также при проектировании молниезащиты важно помнить о правильной пространственной ориентации электрических цепей. Следует размещать цепь перпендикулярно пути тока молнии, так как в этом случае перенапряжение намного меньше, чем при параллельном расположении.

Шаг второй: расчёт необходимого количества токоотводов

Роль токоотводов заключается в транспортировке тока молнии от молниеприёмника к заземлителю. В соответствии с инструкцией Минэнерго России по молниезащите зданий, сооружений и промышленных коммуникаций СО 153-34.21.122-2003, частота размещения молниеотводов по наружному периметру здания зависит от избранного уровня защиты.

-5
Рис. 2. Распределение магнитного поля по радиусу цилиндрического объекта диаметром 50 м, где H — расчётное значение напряжённости магнитного поля в заданной точке, I — полный ток молнии.
Рис. 2. Распределение магнитного поля по радиусу цилиндрического объекта диаметром 50 м, где H — расчётное значение напряжённости магнитного поля в заданной точке, I — полный ток молнии.

Однако количество токоотводов, предлагаемых нормативами, недостаточно, если рассматривать влияние электромагнитного поля на электрические сети здания. Увеличение числа токоотводов приводит к уменьшению электродвижущей силы магнитной индукции, возбуждаемой магнитным полем в любом контуре (кабели компьютеров, цепи управления микропроцессорной техникой).

Рассмотрим объект в виде кругового цилиндра диаметром 50 м с вертикальными молниеотводами, размещенными с равным шагом на внешней стороне стены. Возьмём произвольную точку, расположенную на расстоянии 17 м от центра, и определим влияние на нее магнитного поля при различном количестве токоотводов. При минимально допустимых двух токоотводах отношение напряжённости H к полному току молнии I в выбранном месте приближается к 10-2 м-1. При использовании 24 молниеотводов H/I = 10-5 м-1, причём по направлению к центру цилиндра, данное значение будет снижаться. Пример показывает, что при большом количестве токоотводов магнитное поле существенно лишь около стен, а во внутреннем объеме здания стремится к нулю.

В обычных условиях – для прямоугольного строения – число токоотводов должно быть еще выше. Поэтому необходимо использовать железобетонную арматуру стен. Последняя считается электрически непрерывной, если хотя бы 50 % стержней соединены болтами, сваркой или вязкой проволокой. Наименьшие переходные сопротивления, находящиеся в пределах нормируемых 0,05 Ом, обеспечивает экзотермическая сварка.

 ❗ Токоотвод должен быть:

✅  вертикальным и прямым, обеспечивая кратчайший путь тока, без петель;

✅  располагаться на безопасном расстоянии от оконных и дверных проёмов;

✅  максимально защищён от коррозии и механических повреждений;

✅  надежно соединен с молниеприемником;

✅  прикреплен к поверхности, которая не загорится от нагревания;

✅  защищен от механических повреждений и вандализма.

Шаг третий: экранирование электрической цепи

Металлическую оболочку провода правомерно считают эффективным электромагнитным экраном. Обоснованно применять во всех токоприемниках, где есть дорогое оборудование, кабель LICON с оболочкой, которая не дает возможности паразитному току выйти за пределы кабеля. Данные проводники необходимы и в токоотводах, так как именно на них происходит наибольшее количество утечки наведенных токов.

-7

Однако металлическая оболочка не гарантирует полную защиту от воздействия грозовых перенапряжений.

Рассмотрим случай экранированного провода эллиптического сечения (рис. 3). Если жила 1 расположена в месте с максимальной погонной плотностью, а жила 2 – с минимальной, то их напряжения относительно оболочек получатся:

-8

где ρ, Ом*м – удельное сопротивление оболочки; d, м – её толщина; IM, А – ток; a и b, м – расстояние от центра до жил 1 и 2 соответственно.

Напряжение между жилами

-9

Следовательно, любая разница между радиусами оболочки ведёт к появлению перенапряжения между внутренними жилами. Таким образом, всегда предпочтительнее использование экрана кругового сечения.        

Шаг четвёртый: выбор устройства защиты от импульсных перенапряжений (УЗИП)

Кроме атмосферных (результат воздействия молнии), импульсные перенапряжения бывают электростатическими и коммутационными, возникающими при резком изменении установившегося режима работы электрической сети. Следствием любого из них может стать пробой изоляции, выход из строя электрических приборов и возникновение пожара. Эффективная защита от всех типов импульсных перенапряжений – УЗИП на основе варисторов или разрядников.

-10

Основные требования к УЗИП:

✅  снижение перенапряжения до безопасного уровня;

✅  быстродействие;

✅ совместимость с защищаемым оборудованием;

✅  восстановление электрической цепи после затухания наводки;

✅  гашение сопровождающего тока;

✅  значительный ресурс.

Из-за конструктивных особенностей предпочтительнее варисторные УЗИП, поскольку они не дают выброса горячего ионизированного газа из дуговой камеры с её разрушением и могут быть установлены рядом с другим защитным оборудованием и в пластиковых щитах.

Молниезащита всегда должна быть комплексной и обслуживаемой – как внешняя (активная и пассивная), так и внутренняя (УЗИП, уравнивание потенциалов), на главных щитах, возле каждого токоприёмника, а также на слаботочных сетях. Правильная расстановка молниеприёмников, оптимизированная система отвода в землю тока молнии, разумная трассировка внутренних силовых цепей объекта, экранирование кабеля и установка ограничителей перенапряжений помогут обезопасить здание от влияния грозовых разрядов. Также необходимо периодически проводить осмотр, тестирование и мониторинг состояния молниезащиты.

Интересно? С вас лайк и репост! А если подпишетесь на наш канал, никогда не пропустите новых материалов...