1 млрд вольт, 500 тыс ампер — это все молния⚡ Ударит — мало не покажется, так что принимаем меры, чтобы этого избежать — молниезащиту. Мы, в IEK GROUP, знаем об этом если не все, то многое и поможем разобраться, как защититься от прямых ударов ⚡
Комплексная молниезащита состоит из двух частей:
❗ внешней системы, включающей молниеприёмники, токоотводы, заземлители, которая принимает разряд молнии в объект или предотвращает с вероятностью до 98 % последствия, связанные с прямым ударом. Может быть пассивного (традиционный молниеотвод) или активного (перехватывающего молнию) типа;
❗ внутренней системы, которая защищает от вторичных воздействий молнии и состоит из элементов экранирования, уравнивания потенциалов, устройств защиты от импульсных перенапряжений (УЗИП).
А чтобы правильно собрать все воедино, нужно сделать 4 обязательных шага.
Шаг первый: оптимальная трассировка
При проектировании молниезащиты важно обратить внимание на ее расположение относительно инженерных сетей здания. Если рядом с заземлителем проходят подземные коммуникации, то на небольших расстояниях они получают потенциал от заземлителя и играют роль проводника, принимая на себя часть разряда молнии. Передача высокого напряжения особо сильна в случае трубопроводов, выполненных из труб с хорошо проводящей жидкостью внутри.
На рис. 1 видно, что даже при расстоянии 15 метров потенциал составит около 15 % от напряжения на токоотводе. Согласно закону Ома,
при токе молнии 20 кА и сопротивлении 10 Ом потенциал на заземлителе составит 200 кВ, а на расстоянии 15 м от него будет приблизительно равен 30 кВ. Поэтому основной принцип при выборе оптимальной трассировки наземных и подземных электрических цепей объекта – максимально удалить коммуникации от заземлителей молниеотводов.
Также при проектировании молниезащиты важно помнить о правильной пространственной ориентации электрических цепей. Следует размещать цепь перпендикулярно пути тока молнии, так как в этом случае перенапряжение намного меньше, чем при параллельном расположении.
Шаг второй: расчёт необходимого количества токоотводов
Роль токоотводов заключается в транспортировке тока молнии от молниеприёмника к заземлителю. В соответствии с инструкцией Минэнерго России по молниезащите зданий, сооружений и промышленных коммуникаций СО 153-34.21.122-2003, частота размещения молниеотводов по наружному периметру здания зависит от избранного уровня защиты.
Однако количество токоотводов, предлагаемых нормативами, недостаточно, если рассматривать влияние электромагнитного поля на электрические сети здания. Увеличение числа токоотводов приводит к уменьшению электродвижущей силы магнитной индукции, возбуждаемой магнитным полем в любом контуре (кабели компьютеров, цепи управления микропроцессорной техникой).
Рассмотрим объект в виде кругового цилиндра диаметром 50 м с вертикальными молниеотводами, размещенными с равным шагом на внешней стороне стены. Возьмём произвольную точку, расположенную на расстоянии 17 м от центра, и определим влияние на нее магнитного поля при различном количестве токоотводов. При минимально допустимых двух токоотводах отношение напряжённости H к полному току молнии I в выбранном месте приближается к 10-2 м-1. При использовании 24 молниеотводов H/I = 10-5 м-1, причём по направлению к центру цилиндра, данное значение будет снижаться. Пример показывает, что при большом количестве токоотводов магнитное поле существенно лишь около стен, а во внутреннем объеме здания стремится к нулю.
В обычных условиях – для прямоугольного строения – число токоотводов должно быть еще выше. Поэтому необходимо использовать железобетонную арматуру стен. Последняя считается электрически непрерывной, если хотя бы 50 % стержней соединены болтами, сваркой или вязкой проволокой. Наименьшие переходные сопротивления, находящиеся в пределах нормируемых 0,05 Ом, обеспечивает экзотермическая сварка.
❗ Токоотвод должен быть:
✅ вертикальным и прямым, обеспечивая кратчайший путь тока, без петель;
✅ располагаться на безопасном расстоянии от оконных и дверных проёмов;
✅ максимально защищён от коррозии и механических повреждений;
✅ надежно соединен с молниеприемником;
✅ прикреплен к поверхности, которая не загорится от нагревания;
✅ защищен от механических повреждений и вандализма.
Шаг третий: экранирование электрической цепи
Металлическую оболочку провода правомерно считают эффективным электромагнитным экраном. Обоснованно применять во всех токоприемниках, где есть дорогое оборудование, кабель LICON с оболочкой, которая не дает возможности паразитному току выйти за пределы кабеля. Данные проводники необходимы и в токоотводах, так как именно на них происходит наибольшее количество утечки наведенных токов.
Однако металлическая оболочка не гарантирует полную защиту от воздействия грозовых перенапряжений.
Рассмотрим случай экранированного провода эллиптического сечения (рис. 3). Если жила 1 расположена в месте с максимальной погонной плотностью, а жила 2 – с минимальной, то их напряжения относительно оболочек получатся:
где ρ, Ом*м – удельное сопротивление оболочки; d, м – её толщина; IM, А – ток; a и b, м – расстояние от центра до жил 1 и 2 соответственно.
Напряжение между жилами
Следовательно, любая разница между радиусами оболочки ведёт к появлению перенапряжения между внутренними жилами. Таким образом, всегда предпочтительнее использование экрана кругового сечения.
Шаг четвёртый: выбор устройства защиты от импульсных перенапряжений (УЗИП)
Кроме атмосферных (результат воздействия молнии), импульсные перенапряжения бывают электростатическими и коммутационными, возникающими при резком изменении установившегося режима работы электрической сети. Следствием любого из них может стать пробой изоляции, выход из строя электрических приборов и возникновение пожара. Эффективная защита от всех типов импульсных перенапряжений – УЗИП на основе варисторов или разрядников.
Основные требования к УЗИП:
✅ снижение перенапряжения до безопасного уровня;
✅ быстродействие;
✅ совместимость с защищаемым оборудованием;
✅ восстановление электрической цепи после затухания наводки;
✅ гашение сопровождающего тока;
✅ значительный ресурс.
Из-за конструктивных особенностей предпочтительнее варисторные УЗИП, поскольку они не дают выброса горячего ионизированного газа из дуговой камеры с её разрушением и могут быть установлены рядом с другим защитным оборудованием и в пластиковых щитах.
Молниезащита всегда должна быть комплексной и обслуживаемой – как внешняя (активная и пассивная), так и внутренняя (УЗИП, уравнивание потенциалов), на главных щитах, возле каждого токоприёмника, а также на слаботочных сетях. Правильная расстановка молниеприёмников, оптимизированная система отвода в землю тока молнии, разумная трассировка внутренних силовых цепей объекта, экранирование кабеля и установка ограничителей перенапряжений помогут обезопасить здание от влияния грозовых разрядов. Также необходимо периодически проводить осмотр, тестирование и мониторинг состояния молниезащиты.
Интересно? С вас лайк и репост! А если подпишетесь на наш канал, никогда не пропустите новых материалов...