Найти тему
Kangaroo

Истоки Алгоритма:Мухаммад аль-Хорезми - основатель Алгебры

Оглавление
Мухаммад аль-Хорезми
Мухаммад аль-Хорезми

Термин «алгебра» взят из сочинения среднеазиатского учёного Аль-Хорезми (на рис. выше) «Краткая книга об исчислении аль-джабра и аль-мукабалы» (825 год). Слово «аль-джабр» при этом означало операцию переноса вычитаемых из одной части уравнения в другую и его буквальный смысл «восполнение».
Трактат аль-Хорезми — важная веха развития арифметики и классической алгебры, науки о решении уравнений. Он на столетия определил характер алгебры как практической науки без аксиоматической основы. В трактате аль-Хорезми систематизировал и изложил два известных ему выдающихся достижения индийских математиков — арифметику в позиционной десятичной системе счисления и решение квадратного уравнения. Поскольку Европа познакомилась с этими достижениями по латинскому переводу XII века книги аль-Хорезми, начало развития современной европейской математики оказалось связанным с его книгой и его именем.

  «Аль-кита́б аль-мухтаса́р фи хиса́б аль-дже́бр ва-ль-мука́баля» (араб. الْكِتَاب الْمُخْتَصَر فِي حِسَاب الْجَبْر وَالْمُقَابَلَة — «Краткая книга восполнения и противопоставления») — математический трактат Мухаммеда ибн Мусы аль-Хорезми (IX век), от названия которого произошёл термин алгебра. Также благодаря этой книге появился термин алгоритм
«Аль-кита́б аль-мухтаса́р фи хиса́б аль-дже́бр ва-ль-мука́баля» (араб. الْكِتَاب الْمُخْتَصَر فِي حِسَاب الْجَبْر وَالْمُقَابَلَة — «Краткая книга восполнения и противопоставления») — математический трактат Мухаммеда ибн Мусы аль-Хорезми (IX век), от названия которого произошёл термин алгебра. Также благодаря этой книге появился термин алгоритм

Алгоритм

Латинский перевод книги начинается словами «Dixit Algorizmi» (сказал Алгоризми). Так как сочинение об арифметике было очень популярно в Европе, то латинизированное имя автора (Algorizmi или Algorizmus) стало нарицательным и средневековые математики так называли арифметику, основанную на десятичной позиционной системе счисления. Позднее европейские математики стали называть так всякое вычисление по строго определённым правилам. В настоящее время термин алгоритм означает набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.

Алгебра

А́лгебра (от араб. الْجَبْر, «аль-джабр» — восполнение) — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.

За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения (см. Математика в девяти книгах). Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В XIII веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя.

Термин «алгебра» взят из сочинения среднеазиатского учёного Аль-Хорезми «Краткая книга об исчислении аль-джабра и аль-мукабалы» в 825 году, и только в XII веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространение получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.

Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.