Nature Materials: Из наночастиц и ДНК ученые собрали квазикристалл

О результатах работы группы, возглавляемой исследователями из Северо-Западного университета, Мичиганского университета и Центра совместных исследований биоматериалов в Сан-Себастьяне (Испания), сообщается в журнале Nature Materials. В отличие от обычных кристаллов, структура которых повторяется, узоры в квазикристаллах не повторяются. Квазикристаллы, построенные из атомов, могут обладать исключительными свойствами — например, по-разному поглощать тепло и свет, проявлять необычные электронные свойства, например, проводить электричество без сопротивления, а их поверхность может быть очень твердой или очень скользкой. Инженеры, изучающие наноразмерную сборку, часто рассматривают наночастицы как своего рода «атомы-конструкторы», которые обеспечивают новый уровень контроля над синтетическими материалами. Одна из задач — направить частицы на сборку в желаемые структуры с полезными свойствами, и, создав первый квазикристалл, собранный с помощью ДНК, команда вышла на новый рубеж в конструировании наноматериалов. Существование квазикристаллов было загадкой на протяжении десятилетий, и их открытие было удостоено Нобелевской премии, — сказал Чад Миркин, профессор химии Северо-Западного университета Джордж Б. Ратманн и соавтор исследования. Хотя в настоящее время известно несколько примеров, обнаруженных в природе или случайно, наше исследование раскрывает тайну их образования и, что еще важнее, показывает, как мы можем использовать программируемую природу ДНК для целенаправленного проектирования и сборки квазикристаллов. Группа Миркина известна использованием ДНК в качестве дизайнерского клея для инженерии формирования коллоидных кристаллов из наночастиц, а группа Луиса Лиз-Марзана, профессора Икербаска из Испанского центра совместных исследований в области биоматериалов, смогла создать наночастицы, которые при правильных условиях могут образовывать квазикристаллы. Группа Лиз-Марзана пробовала использовать различное количество граней, а также сжимать и растягивать формы. Вэньцзе Чжоу и Хайсинь Линь, докторанты химического факультета Северо-Западного университета, использовали нити ДНК, закодированные для распознавания друг друга, чтобы запрограммировать частицы на сборку в квазикристалл. Независимо от этого группа Шэрон Глотцер, заведующей кафедрой химического машиностроения Энтони К. Лембке в Университете штата Массачусетс, занималась моделированием бипирамид с различным количеством граней. Йейн Лим и Сангмин Ли, докторанты химического факультета Университета, обнаружили, что при определенных условиях и правильных относительных размерах десятигранники — десятигранные пентагональные бипирамиды — образуют квазикристалл. В 2009 г. группа Глотцера предсказала первый квазикристалл слоистых наночастиц, образованный не из бипирамид, а из тетраэдров — одиночных пирамид с четырьмя треугольными гранями, как у кубика D4. Здесь эти промежутки заполняются ДНК, поэтому логично предположить, что и декаэдры могут образовывать квазикристаллы, — говорит Глотцер, соавтор исследования. Благодаря сочетанию теории и эксперимента три исследовательские группы превратили частицы декаэдра в квазикристалл, что было подтверждено с помощью электронной микроскопии, полученной в Северо-Западном университете, и рентгеновского рассеяния, проведенного в Аргоннской национальной лаборатории. Но в отличие от большинства аксиальных квазикристаллов, рисунок плиток в слоях нового квазикристалла не повторяется идентично от одного слоя к другому.Новости мира инноваций