Мы уже рассмотрели скалярное произведение векторов и определитель матрицы. Самое время поговорить о произведении векторном.
Формально через координаты его можно посчитать, если записать матрицу указанного вида и найти её определитель. Во-первых, численно произведение векторов будет равно площади параллелограмма, образованного этими векторами. Что уже как минимум полезно для геометрических задач.
Во-вторых, если скалярное произведение показывает, насколько перемножаемые векторы смотрят в одну сторону, то векторное произведение показывает, насколько направление векторов различно...
В этой статье я поведаю способ как найти объём, высоту и площадь основания тетраэдра, когда даны только координаты вершин. Структуры статьи такая:
Быстрая теория
Подробная теория
Пример