Здравствуйте! Давайте немного вспомним что мы с Вами изучали на прошлом занятии. Движение тела по окружности или дуге окружности довольно часто встречается в природе и технике. Приблизительно по окружности движется Луна вокруг Земли; каждая точка земной поверхности движется по окружности вокруг земной оси; дуги окружности описывают различные точки самолёта во время виража, автомобиля при повороте, поезда на закруглении дороги и т. д. Приведите примеры движения тел по окружности, которые вы наблюдаете в повседневной жизни...
Конечно, давайте разберем, как найти угол между векторами на примере задачи из ОГЭ. Предположим, у нас есть два вектора 𝑎→ и 𝑏→ с координатами: 𝑎→ = (𝑎1; 𝑎2) 𝑏→ = (𝑏1; 𝑏2) Наша цель — найти угол 𝜃 между этими векторами. Формула для нахождения угла. Для нахождения угла между двумя векторами используется следующая формула: cos𝜃 = (𝑎→⋅𝑏→)/(|𝑎→||𝑏→|) где: (𝑎→⋅𝑏→) — скалярное произведение векторов. |𝑎→| и |𝑏→| — длины (модули) векторов. Нахождение скалярного произведения. Скалярное произведение двух векторов 𝑎→ и 𝑏→ вычисляется по формуле: 𝑎→⋅𝑏→ = 𝑎1𝑏1+𝑎2𝑏2 Нахождение модулей векторов...