Сущность метода координат, как метода решения задач состоит в том, что задавая фигуры уравнениями и выражая в координатах различной геометрические соотношения мы можем решать геометрическую задачу средствами, алгебры метод координат - это универсальный метод. Он обеспечивает тесную связь между алгеброй и геометрией которой дают богатые плоды. Какие они не могли бы дать, оставаясь разделёнными. В некоторых случаях метод координат даёт возможность строить доказательства и решать многие задачи более рационально красиво, чем чисто геометрическими способами...
Конечно, давайте разберем, как найти угол между векторами на примере задачи из ОГЭ. Предположим, у нас есть два вектора 𝑎→ и 𝑏→ с координатами: 𝑎→ = (𝑎1; 𝑎2) 𝑏→ = (𝑏1; 𝑏2) Наша цель — найти угол 𝜃 между этими векторами. Формула для нахождения угла. Для нахождения угла между двумя векторами используется следующая формула: cos𝜃 = (𝑎→⋅𝑏→)/(|𝑎→||𝑏→|) где: (𝑎→⋅𝑏→) — скалярное произведение векторов. |𝑎→| и |𝑏→| — длины (модули) векторов. Нахождение скалярного произведения. Скалярное произведение двух векторов 𝑎→ и 𝑏→ вычисляется по формуле: 𝑎→⋅𝑏→ = 𝑎1𝑏1+𝑎2𝑏2 Нахождение модулей векторов...