Всем привет! Сегодня мы обсудим несколько доказательств того, что высоты треугольника пересекаются в одной точке (ортоцентре). Про важные свойства ортоцентра можно прочитать по ссылке. А про то, как можно доказывать перпендикулярность, я писал вот в этом разборе. Итак, приступим. Напоминаю, что следить за публикациями также можно на телеграм-канале Олимпиадная геометрия. Общее практически во всех доказательствах того, что высоты пересекаются в одной точке следующее. Мы проводим две высоты и пытаемся проверить, что третья высота проходит через точку пересечения первых двух...
Очень легко искать точку пересечения двух прямых, когда нам даны их уравнения. Приравнял "игреки", нашел "иксы" и дело сделано. Но, что делать, если уравнений нет? Есть только точки, через которые эти прямые проходят. Такой номер встретился мне, когда я просматривала задания на Решу ОГЭ. Предлагаю Вам, разобраться в нем. Вот формулировка задания: Я сделаю чертеж для этого задания. Заметим, что, несмотря на то, что чертеж получился "хорошим", мы не можем считать это решением задачи. Так как могла быть погрешность в вычислениях, а уравнений для проверки нет...