Рассматриваем задачу, где необходимо найти скалярное произведение векторов. Обращаем внимание на частую ошибку при решении этой задачи.
Скалярное произведение векторов
Скалярное произведение (также известное как скалярное умножение) векторов Благодаря данной формуле можем найти значения угла между векторами – выразив косинус угла: Зная координатах двух векторов в трехмерном пространстве, скалярное произведение можно вычислять по следующей формуле: Косинус угла между двумя векторами в координатной форме определяем по формуле: Из определения скалярного произведения получена формула для вычисления проекции одного вектора...
От скалярного произведения к внутреннему
Помните, что такое скалярное произведение векторов? Так вот, в удивительном мире геометрической алгебры, скалярных произведений целых четыре! Давайте раберёмся, зачем нам такое богатство, а в конце, как обычно, построим красивые картинки. На сей раз, полюбуемся на четырёхмерную сферу. Продолжим наш неспешный разговор о геометических алгебрах, в которых вычисления производятся не с координатами точек или прямых, а с самими точками, прямыми, плоскостями и другими геометрическими объектами. В прошлый раз мы рассмотрели афинную геометрическую алгебру Cl(2,0,0)...