Скалярное произведение векторов. Угол между векторами. Проекция вектора на вектор
Как найти угол между векторами (задачи из ОГЭ)?
Конечно, давайте разберем, как найти угол между векторами на примере задачи из ОГЭ. Предположим, у нас есть два вектора 𝑎→ и 𝑏→ с координатами: 𝑎→ = (𝑎1; 𝑎2) 𝑏→ = (𝑏1; 𝑏2) Наша цель — найти угол 𝜃 между этими векторами. Формула для нахождения угла. Для нахождения угла между двумя векторами используется следующая формула: cos𝜃 = (𝑎→⋅𝑏→)/(|𝑎→||𝑏→|) где: (𝑎→⋅𝑏→) — скалярное произведение векторов. |𝑎→| и |𝑏→| — длины (модули) векторов. Нахождение скалярного произведения. Скалярное произведение двух векторов 𝑎→ и 𝑏→ вычисляется по формуле: 𝑎→⋅𝑏→ = 𝑎1𝑏1+𝑎2𝑏2 Нахождение модулей векторов...
Основные операции над векторами.
Определение: Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. Геометрически сложение векторов выглядит так: - для неколлинеарных векторов: - для коллинеарных (сонаправленных или противоположно направленных) векторов: - сложение по правилу параллелограмма: Умножение вектора на скаляр (изменяет длину и направление вектора): Для удобства математических операции с векторами их раскладывают на проекции (на плоскости их две)...