Для шара на рис. 1 с центром в начале координат на расстоянии от оси Х равному дуге Li проводим i-тое сечение шара и сечение шара с элементарным приращением ∆L. Эти сечения показаны пунктирными линиями. Элементарную площадь поверхности i-той из n частей шара ∆S между этими сечениями вычисляем как площадь боковой поверхности цилиндра с радиусом оснований Ri и высотой ∆L, так как ∆L – бесконечно малая величина. Таким образом имеем: ∆S=2πRi∆L; Где Ri – радиус окружности i-того сечения шара...
Из общей массы поверхностей выделяется особый класс поверхностей, которые называются поверхностями вращения. Поверхности вращения имеют широкое применение в технике, так как являются определяющими многих деталей различных механизмов. Это объясняется распространенностью вращательного движения, простотой изготовления и обработки деталей с поверхностями вращения. Поверхности вращения – это поверхности, образованные при вращении некоторой образующей линии (прямой или кривой) вокруг неподвижной оси. Поверхность вращения чаще всего задаётся образующей l и положением оси i (см...