1957 читали · 4 года назад
Средняя линия и отрезок, соединяющий середины оснований — задание №26 ОГЭ
Задача повышенной сложности. Именно так описывают задание №26. Это вторая часть, геометрия. Можно набрать два балла прямо сейчас. Вообще, задача – интересная, но есть в ней один минус. Минус этот – доказательство того, что EF – часть медианы. Какой медианы, наверное догадались. Подсказки, на всякий случай, ниже. Начать лучше с углов – в сумме они 90°, а значит если продлить стороны трапеции, то получим треугольник. Часть медианы, как раз этого треугольника будет отрезок EF. Доказать это можно через подобие (надо рассмотреть две пары подобных треугольников)...
14,4 тыс читали · 2 года назад
Задание №15 ОГЭ. Подобные треугольники.
Здравствуйте, уважаемые читатели. В этой статье рассмотрим задачи по геометрии за 8 класс. Задачи в основном на применение первого признака подобия треугольника. Они встречаются в 15 задании ОГЭ по математике. Не все задачи будем решать через первый признак подобия. Задача №1. Применение средней линии треугольника. Решение Так как точки М и N являются серединами сторона АВ и ВС, то MN - средняя линия треугольника. Средняя линия треугольника - это отрезок соединяющий середины противоположных сторон...