§10. Построение перпендикуляра к плоскости. Расстояние от точки до плоскости. В курсе Начертательной геометрии часто встречаются задачи, связанные с проведением перпендикуляра к заданной плоскости. Существует теорема о проекциях прямого угла, которая имеет следующую формулировку: Если одна из сторон прямого угла параллельна какой-либо плоскости проекций, то проекция угла на эту плоскость является также прямым углом. Исходя из этой теоремы, можно утверждать следующее: Горизонтальная проекция перпендикуляра к плоскости перпендикулярна горизонтальной проекции горизонтали этой плоскости...
Не всё простое гениально, но всё гениальное просто. В полной мере это относится к знакомой всем нам со школы системе координат, основу которой составляют две оси - X (ось абсцисс) и Y (ось ординат). Почему это просто? Потому что абсолютно любую плоскость можно разделить X-Y-линиями на четыре четверти и затем проградуировать в тех или иных единицах. Почему оно гениально? Да потом, что после этого можно установить местоположение любой точки данной плоскости в двухмерном пространстве и прописать её "адрес" с точностью до неприличия...