Как найти ОДЗ (область допустимых значений) при решении уравнения?
Область допустимых значений (ОДЗ) - это множество значений переменной, при которых выражение или уравнение имеет смысл. Определение ОДЗ особенно важно при решении уравнений, содержащих дроби, корни и логарифмы, так как не все значения переменной допустимы. Рассмотрим примеры: 1. Уравнение с дробью: 1/(x-3) = 2. ОДЗ определяется условием, что знаменатель дроби не должен быть равен нулю, так как деление на ноль не определено. В данном случае, x-3 не должно быть равно нулю, отсюда x не должно быть равно 3. Таким образом, ОДЗ для этого уравнения - все вещественные числа, кроме 3. 2. Уравнение с корнем: sqrt(x+2) = 3...
597 читали · 6 лет назад
8. Исследование функции одной переменной. Монотонность, экстремум, выпуклость, точки перегиба, асимптоты.
Схема как исследовать функцию и построить график Пример Монотонность Функция называется монотонной на промежутке, если она на этом промежутке или возрастает, или убывает. Функция называется возрастающей в промежутке (a; b), если большему значению аргумента соответствует большее значение функции, то есть для любой пары x_1, x_2 принадлежащей промежутку (a, b) таких, что x_1 > x_2 справедливо неравенство f(x_1) > f(x_2). Функция называется убывающей в промежутке (a; b), если большему значению...