131 читали · 1 год назад
Скалярное произведение векторов
Скалярное произведение (также известное как скалярное умножение) векторов Благодаря данной формуле можем найти значения угла между векторами – выразив косинус угла: Зная координатах двух векторов в трехмерном пространстве, скалярное произведение можно вычислять по следующей формуле: Косинус угла между двумя векторами в координатной форме определяем по формуле: Из определения скалярного произведения получена формула для вычисления проекции одного вектора...
8 месяцев назад
Векторные векторы. Вводная статья с формулами для решения задач ЕГЭ
То, что вектор - это направленный отрезок известно давно и всем. Конечно, это очень тяжело осознать (как отрезок может иметь направление и зачем???), но сегодня мы постараемся прояснить некоторые моменты. 1. Координаты вектора Во-первых, начнем с того, что изобразим какой-нибудь вектор. Вектор строится по двум точкам и может иметь направление как от A до В, так и от В до А. Такие векторы называются противоположными. Существует бесконечное количество векторов с координатами (6;2) поэтому координаты вектора не позволяют определить его расположение в пространстве...