127 читали · 2 года назад
Комплексные числа.История.Операции над комплексными числами.
Введение Допустим у нас есть функция f(x) = x²+1 построим график функции. Типичная парабола теперь давайте найдем точки в которых функция равна нулю, то есть ищем корни, на графике в этих точках парабола должна пересекать ось x, как можно заметить на (рис.1) таких точек нет значит если верить этому графику уравнение x²+1=0 не имеет решений Но есть нюанс двести с лишним лет назад ученый по фамилии Гаусс (рис.2), доказал, что любой многочлен f: deg(f)=n (где deg-степень многочлена) имеет ровно n корней...
2202 читали · 6 лет назад
Математика. Формула Эйлера и её следствия.
Сегодня ознакомимся с очень интересной формулой связанной одновременно с комплексными числами и тригонометрией, приведёт это всё нас к освоению нового класса функций, которые носят название "гиперболические". Применяется сама формула очень часто в высшей математике, в основном разного рода преобразованиях. Формула Эйлера имеет вид: Удивительно, но зная лишь эту формулу можно вывести целую таблицу гиперболических функций, мы все выводить не будем конечно, но одну попробуем, ведь все остальные можно вывести самостоятельно...