Найдите быстро площадь треугольника по трём данным сторонам 3√2; 3√3 и
Как найти высоту треугольника (задачи из ОГЭ)?
Давайте разберем, как найти высоту треугольника на примерах. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противоположную сторону (или на ее продолжение). Пример 1. Равносторонний треугольник. Задача. Найти высоту равностороннего треугольника со стороной 𝑎. Решение: 1. Построение высоты. В равностороннем треугольнике все стороны равны, и все углы равны 60°. Высота, опущенная из вершины на противоположную сторону, делит треугольник на два равных прямоугольных треугольника. 2. Использование теоремы Пифагора. Рассмотрим один из этих прямоугольных треугольников...
Простая задача на нахождение стороны через площадь треугольника
Ну или не совсем простая, но способов решений будет много. Ну и рисунок-подсказка должен натолкнуть на «продолжение»… Ну или запутать. Задача в продолжение темы «метрическое соотношение сторон в треугольнике», поэтому стоит этот раз решить как раз схожим (с предыдущими задачами) способом. Но как сказано выше — способов тут не мало я перечислю несколько в подсказках, а Вы попробуйте найти свой. Условие Две стороны треугольника равны 2√2 и 3, площадь треугольника равна 3. Найдите третью сторону. Подсказки Начнём с оптимального (по теме прошлых задач) варианта решения — теорема косинусов...