В статье про прямоугольный треугольник посмотрели задачи связанные с синусами и косинусами из 1 части ОГЭ. Так что обязательно заглядывай. Получается, что решить прямоугольный треугольник (найти все стороны и острые углы) можно довольно просто, зная всего лишь два элемента прямоугольного треугольника :две стороны (по теореме Пифагора) или сторону и острый угол (из определений синуса, косинуса, тангенса). Но решить треугольник (найти все стороны и углы ) можно и произвольный, зная три элемента: три стороны, две стороны и угол, или два угла и сторону...
Ну или не совсем простая, но способов решений будет много. Ну и рисунок-подсказка должен натолкнуть на «продолжение»… Ну или запутать. Задача в продолжение темы «метрическое соотношение сторон в треугольнике», поэтому стоит этот раз решить как раз схожим (с предыдущими задачами) способом. Но как сказано выше — способов тут не мало я перечислю несколько в подсказках, а Вы попробуйте найти свой. Условие Две стороны треугольника равны 2√2 и 3, площадь треугольника равна 3. Найдите третью сторону. Подсказки Начнём с оптимального (по теме прошлых задач) варианта решения — теорема косинусов...