203 читали · 1 год назад
🌍 20 библиотек Python для работы с пространственными данными. Python стал доминирующим языком в области работы с геоданными, благодаря своей универсальности, обширной экосистеме библиотек и удобному синтаксису. Эта подборка геопространственных библиотек Python содержит богатый инструментарий, для обработки и анализа данных ГИС. 1. ArcGIS API for Python (Esri) : Разработанная компанией Esri, эта библиотека предоставляет возможности GeoAI для пользователей ArcGIS. 2. Earth Engine API : API Earth Engine позволяет получить доступ к обширной коллекции геопространственных данных Google Earth Engine и выполнять задачи анализа с помощью Python. 3. TorchGeo (PyTorch): TorchGeo предоставляет инструменты и утилиты для работы с геопространственными данными в PyTorch. 4. fastai.vision (fast.ai): Хотя fastai.vision не предназначена специально для GeoAI, она является популярной библиотекой для задач глубокого обучения и компьютерного зрения, которая может быть использована для анализа геопространственных изображений. 5. arcpy (Esri) - это библиотека Python, предоставляемая Esri для работы с геопространственными данными на платформе ArcGIS. Она позволяет автоматизировать задачи геообработки и выполнять пространственный анализ. 6. PyQt (Riverbank Computing) - это набор утилиты Python для Qt. Его можно использовать для создания графических интерфейсов (GUI) для геопространственных приложений. 7. GeoPandas: расширяет функциональность Pandas, популярной библиотеки анализа данных, для работы с геопространственными данными. Она предоставляет высокоуровневый интерфейс для работы с векторными данными, такими как точки, линии и полигоны. 8. Rasterio - это библиотека для чтения и записи геопространственных растровых наборов данных. Она обеспечивает эффективный доступ к растровым данным и позволяет выполнять различные операции с геоданными. 9. GDAL (Open-Source Geospatial Foundation) - это мощная библиотека для чтения, записи и манипулирования геопространственными растровыми и векторными форматами данных. 10. Fiona - это Python API для чтения и записи геопространственных данных в различных форматах, включая Shapefiles и GeoJSON. Он хорошо интегрируется с другими библиотеками, такими как GeoPandas. 11. Shapely - это библиотека для геометрических операций в Python. Она позволяет создавать, манипулировать и анализировать геометрические объекты. 12. GeoPy - это библиотека которая позволяет преобразовывать адреса в географические координаты и наоборот. Библиотека для геокодирования и вычисления расстояний. Geopy также предоставляет функции для вычисления расстояний между точками на основе различных метрик расстояния. 13. PySAL: предоставляет широкий спектр методов пространственного анализа, включая пространственную автокорреляцию, кластеризацию и пространственную регрессию. 14. Pyproj - это интерфейс Python к библиотеке PROJ, которая предоставляет возможности преобразования координат. Она позволяет преобразовывать координаты между различными системами отсчета координат (CRS). 15. Rasterstats предоставляет инструменты для зонального статистического анализа наборов данных. 16. Geos - это библиотека C++, которая обеспечивает низкоуровневые геометрические операции, а библиотека Python Geos предлагает интерфейс Python к Geos. Она часто используется в сочетании с Shapely. 17. RSGISLib - имеет функции для обработки тепловых изображений, включая радиометрическую коррекцию, оценку температуры поверхности земли. 18. WhiteboxTools - это библиотека для геопространственного анализа и обработки данных. Она предлагает полный набор инструментов для таких задач, как анализ рельефа, гидрологическое моделирование и обработка данных LiDAR. 19. GeoDjango - GeoDjango интегрируется с Django. 20. Xarray: Предназначен для работы с многомерными геопространственными наборами данных, предоставляет инструменты для манипулирования данными, анализа и визуализации. @machinelearning
529 читали · 2 года назад
🗺 Дорожная карта для изучающих Python
⚡️ Roadmap по Python Чтобы новички обучались эффективнее, опытные разработчики создают подобные карты, чтобы junior'ы знали, что им надо ещё подучить и куда идти дальше для развития навыков . Гайды по...