Дианкин И.Д., Пензар Д.Д. - Машинное обучение в биологии. Лекции - 7. Бустинг
XGBoost в Машинном обучении простыми словами
XGBoost — это opensource-библиотека, обеспечивающая высокопроизводительную реализацию Деревьев решений (Decision Tree). В этой статье узнаем, как работает Градиентный бустинг (GB), а затем рассмотрим пример на Python. В обычном Машинном обучении (ML), таком как дерево решений, мы просто обучаем Модель (Model) на наборе данных и используем ее для прогнозирования: Мы можем немного поэкспериментировать с параметрами или дополнить данные, но в итоге мы по-прежнему используем ту же модель. Даже если мы строим Ансамбль (Ensemble) – комбинацию моделей, все модели обучаются по отдельности...