Решение задачи Дирихле для уравнения Лапласа в круге
Задача Дирихле для уравнения Лапласа в круге формулируется следующим образом: Найти функцию u(r,θ), удовлетворяющую уравнению Лапласа в полярных координатах: Δu = ∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ² = 0 в круге радиуса R с центром в начале координат, при граничном условии Дирихле: u(R, θ) = f(θ) где f(θ) – заданная функция на границе круга. Для решения этой задачи применяется метод разделения переменных. Предположим, что решение имеет вид: u(r, θ) = R(r)Θ(θ) Подставив это выражение в уравнение Лапласа и разделив переменные, получим два обыкновенных дифференциальных уравнения: r²R'' + rR' - λR = 0 Θ'' + λΘ = 0 где λ – постоянная разделения...
4 года назад
Механический детерминизм по Пьеру-Симону Лапласу
Данная статья относится к Категории: Научные парадигмы Пьер-Симон Лаплас изучая уравнения, описывающие движения планет, пришёл к выводу, что если заданы начальные условия (координаты и импульсы всех частиц системы), действующие на систему и в системе силы, то теоретически можно описать движение системы неограниченно, в прошлое и будущее. До этого, и после открытие первого закона движения Исааком Ньютоном … ещё казалось, что Бог необходим, чтобы пустить в ход весь механизм; планеты, согласно Ньютону, первоначально были приведены в движение рукой Бога...