Задача Дирихле для уравнения Лапласа в круге формулируется следующим образом: Найти функцию u(r,θ), удовлетворяющую уравнению Лапласа в полярных координатах: Δu = ∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ² = 0 в круге радиуса R с центром в начале координат, при граничном условии Дирихле: u(R, θ) = f(θ) где f(θ) – заданная функция на границе круга. Для решения этой задачи применяется метод разделения переменных. Предположим, что решение имеет вид: u(r, θ) = R(r)Θ(θ) Подставив это выражение в уравнение Лапласа и разделив переменные, получим два обыкновенных дифференциальных уравнения: r²R'' + rR' - λR = 0
Θ'' + λΘ = 0 где λ – постоянная разделения...
Приветствую Вас, уважаемые Читатели! Сегодня я хочу поговорить с Вами о школьной математике, а именно об всем известном уравнении окружности. Многие из Вас, я думаю, прекрасно воспроизведут его даже посреди ночи: Однако сейчас мы построим абсолютно другое уравнение окружности всё в тех же декартовых координатах. Для этого возьмем крайнюю левую точку окружности единичного радиуса и проведем через неё прямую: Обозначим угол относительно оси ординат и запишем уравнение прямой, проходящей...