328 читали · 4 года назад
Гравитационное поле в среде космического вакуума
Продолжение цикла статей про вакуум и вселенную. Предыдущая статья здесь. В своем знаменитом «Изложении системы мира» в 1797 году Лаплас писал, что «скорость распространения гравитации, которую он высчитал, анализируя движение Луны, ее так называемые вековые ускорения, не менее чем в 50 миллионов раз превышает скорость света!». И с того времени доказательств Лапласа никто не опроверг. Цитируем: «Сообщается ли притяжение от одного тела к другому мгновенно? Время передачи, если бы оно было для нас заметно, обнаружилось бы преимущественно вековым ускорением в движении Луны...
Решение задачи Дирихле для уравнения Лапласа в круге
Задача Дирихле для уравнения Лапласа в круге формулируется следующим образом: Найти функцию u(r,θ), удовлетворяющую уравнению Лапласа в полярных координатах: Δu = ∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ² = 0 в круге радиуса R с центром в начале координат, при граничном условии Дирихле: u(R, θ) = f(θ) где f(θ) – заданная функция на границе круга. Для решения этой задачи применяется метод разделения переменных. Предположим, что решение имеет вид: u(r, θ) = R(r)Θ(θ) Подставив это выражение в уравнение Лапласа и разделив переменные, получим два обыкновенных дифференциальных уравнения: r²R'' + rR' - λR = 0 Θ'' + λΘ = 0 где λ – постоянная разделения...