Решение задачи Дирихле для уравнения Лапласа в круге
Задача Дирихле для уравнения Лапласа в круге формулируется следующим образом: Найти функцию u(r,θ), удовлетворяющую уравнению Лапласа в полярных координатах: Δu = ∂²u/∂r² + (1/r)∂u/∂r + (1/r²)∂²u/∂θ² = 0 в круге радиуса R с центром в начале координат, при граничном условии Дирихле: u(R, θ) = f(θ) где f(θ) – заданная функция на границе круга. Для решения этой задачи применяется метод разделения переменных. Предположим, что решение имеет вид: u(r, θ) = R(r)Θ(θ) Подставив это выражение в уравнение Лапласа и разделив переменные, получим два обыкновенных дифференциальных уравнения: r²R'' + rR' - λR = 0 Θ'' + λΘ = 0 где λ – постоянная разделения...
1207 читали · 4 года назад
Ковалевская и ее кольца
Математика Софью Васильевну Ковалевскую многие знают в основном как первую женщину — профессора математики, преподававшую в европейском университете. Но в чем заключается ее вклад в науку? Математик Павел Бузин рассказывает о том, как Ковалевская помогла понять природу колец Сатурна и доказала теорему, получившую ее имя. Теорема Коши — Ковалевской Важнейшая работа Ковалевской связана с решением систем дифференциальных уравнений. Она доказала теорему (названную теоремой Коши — Ковалевской) о...