2 года назад
Последовательный отбор признаков для модели машинного обучения
Как известно, некоторые признаки, характеризующие объекты в моделях машинного обучения могут оказаться фиктивными или избыточными. Соответственно, их включение в пайплайн может привести к снижению качества прогнозов. Рассмотрим, один из популярных способов оптимизации набора признаков, который заключается в формировании их множества путем последовательного добавления по одному наиболее эффективному. То есть сначала работа модели тестируется на каждом отдельном признаке и выбирается максимизирующий...
1 месяц назад
Работа с признаками и построение моделей: Основы и продвинутые техники
Регрессионный анализ — это метод, используемый для определения зависимости одной переменной (зависимой или целевой) от одной или нескольких других переменных (независимых признаков). Этот анализ является основой многих моделей машинного обучения, когда требуется предсказать числовое значение. В зависимости от характера данных и взаимосвязи между переменными, используются разные виды регрессии. Линейная регрессия — самый простой и распространённый вид регрессии, при котором предполагается, что между целевой переменной и независимыми признаками существует линейная зависимость...