494 подписчика
Продолжаем публикацию серии заметок от главного технолога АНО "Водородные технологические решения". Заметка №13. Получение водорода из сероводорода.
В Черном море слои воды, расположенные глубже 150 метров, содержат растворённый сероводород (H2S).
При нормальных условиях (давление – 1 атмосфера и температура - 0°С) в одном объёме воды растворяется три объёма сероводорода. Сероводород взрывоопасен в смеси с воздухом в диапазоне концентрации H2S от 4 до 45%.
Низшая теплота сгорания сероводорода – 23,4 МДж/нм3. Теплоты, выделяющейся при сгорании сероводорода, достаточно для производства электроэнергии и теплоты, но, во-первых H2S – коррозионно-активное вещество, а во-вторых, в продуктах сгорания сероводорода, кроме азота, который попадает в зону горения с воздухом, и водяного пара присутствуют пары диоксида серы (SO2), выбросы которого в атмосферу приводят к кислотным дождям.
Можно ли отделить атом серы от атомов водорода в H2S? Или, другими словами, может ли сероводород быть источником получения водорода? Ответ: может!
Общее содержание сероводорода в Чёрном море оценивается величиной 4,6 млрд. тонн. Массовая доля водорода в H2S составляет 1/17 часть, следовательно, в 4,6 млрд тонн сероводорода находится 270 млн. тонн водорода!
Основными методами получения водорода из сероводорода являются:
1) Термическое разложение (минимальные энергозатраты, необходимые для разложения H2S на составляющие элементы 2,4 кВт*ч на 1 нм3 Н2.)
2) Замкнутый термохимический цикл;
3 )Плазмолиз;
4) Электролиз;
5) Фотохимические процессы.
Возникает вопрос: что делать с серой, которая будет образовываться при выделении водорода? Ниже приведены несколько примеров использования новых соединений серы.
Группой профессора Пёна из Университета Аризоны создан полимер, насыщенный серой (SRP), с содержанием этого элемента более 50%. Этот устойчивый полимер уже нашел применение в производстве инфракрасной оптики, заменив дорогие и хрупкие материалы, такие как германий и сульфид цинка. Команда под руководством профессора Джонга Дже (JJ) Вие нашла новое применение для этого материала — трибоэлектрические наногенераторы (TENG), способные превращать механическую энергию в электрическую.
Так чем же хороша сера? Во-первых, она дешевле и доступнее других материалов. Во-вторых, благодаря высокой электроотрицательности серы, она становится отличным кандидатом для материалов, генерирующих поверхностные заряды. Ну и, конечно же, использование серы помогает уменьшить количество химических отходов и сделать технологию более устойчивой.
В 2019 и 2021 годах команда профессора Вие уже проводила успешные исследования по созданию TENG из SRP, но эти методы все еще зависели от токсичных химикатов. Новое исследование, опубликованное в Advanced Materials, идет дальше. Ученые использовали MXene, новейший 2D-наноматериал, создавая композит SRP/MXene с сегрегированной структурой. Этот метод снижает содержание MXene до минимального уровня, но при этом увеличивает площадь интерфейса между MXene и матрицей SRP, что значительно повышает производительность TENG. Результаты превзошли все ожидания: новый TENG показал рекордную пиковую плотность мощности 3.80 Вт/м², что в 8,4 раза выше предыдущих разработок. Такой генератор способен напрямую питать 558 светодиодов и эффективно заряжать конденсаторы, что доказывает его пригодность для практических применений.
Кроме того, композит SRP/MXene обладает исключительной способностью к самовосстановлению, что облегчает его переработку без потери производительности. Это не только улучшает технические характеристики, но и способствует достижению истинной устойчивости в области возобновляемых источников энергии.
#заметки #новаяэнергия #АНОВТР #водород #сероводород #топливо #электричество
3 минуты
24 апреля 2025