Найти тему
10,2 тыс подписчиков

🌟 Llama-3.1-Nemotron-70B: набор файнтюн-моделей и датасет HelpSteer2 от NVIDIA.


NVIDIA опубликовала на HuggingFace 4 версии Llama-3.1-Nemotron-70B:


Модель получила улучшение в задачах ответа на вопросы и выполнение пользовательских инструкций. Обучение проводилось с использованием RLHF (REINFORCE) на основе Llama-3.1-Nemotron-70B-Reward и датасета HelpSteer2-Preference.

Nemotron-70B-Instruct достигла высоких результатов в тестах Arena Hard (85.0), AlpacaEval 2 LC (57.6) и GPT-4-Turbo MT-Bench (8.98), и обошла GPT-4o и Claude 3.5 Sonnet.


Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованные версии Llama-3.1-Nemotron-70B-Instruct-HF в формате GGUF с разрядностями от 1-bit (16.75 Gb) до 8-bit (74.98 Gb).


Модель с функционалом чата, рассуждений и специальными навыками для оценки качества ответов других LLM. Она использует английский язык и способна оценивать ответы длиной до 4096 токенов, присваивая им баллы, отражающие их качество.

Основана на Llama-3.1-70B-Instruct Base и использует комбинацию методов Bradley Terry и SteerLM Regression Reward Modelling.

Nemotron-70B-Reward занимает первое место в RewardBench.


Версия с поддержкой Transformers, полученная путем конвертации, без какого-либо обучения.

Квантованная версия Llama-3.1-Nemotron-70B-Reward-HF в формате MLX (40 Gb).

Вместе с моделями опубликован датасет HelpSteer2 - набор данных на английском языке, предназначенный для обучения reward-моделей, которые используются для повышения полезности, фактической точности и связности ответов других LLM.

HelpSteer2 содержит 21 362 строки, каждая из которых включает в себя запрос, ответ и пять аннотированных человеком атрибутов ответа: полезность, правильность, связность, сложность и многословность.

⚠️ Представленные модели требуют систему с как минимум 4 GPU NVIDIA (40 Gb) или 2 GPU (80 Gb) и 150 Gb свободного места на диске.

⚠️ Для локального развертывания Llama-3.1-Nemotron-70B без поддержки Transformers рекомендуется использовать NVIDIA NeMo Framework и TRT-LLM.

📌Лицензирование моделей: Llama 3.1 Community License.

📌Лицензирование датасета : CC-BY-4.0

🟡Arxiv
🟡Demo


#AI #ML #LLM #Nemotron #NVIDIA
1 минута