Найти тему
10,2 тыс подписчиков

Графовые сверточные сети: введение в GNN


Графовые нейронные сети (GNN) представляют собой одну из наиболее интересных и быстро развивающихся архитектур в области глубокого обучения.

Будучи моделями глубокого обучения, предназначенными для обработки данных, структурированных в виде графов, GNN обладают универсальностью и огромными обучающими возможностями.

Среди различных типов GNN наиболее распространенной и широко применяемой моделью стали графовые сверточные сети (GCN).

Инновационность GCN обусловлена их способностью использовать для прогнозирования как особенности узла, так и его локальность, что обеспечивает эффективный способ обработки данных, структурированных в виде графов.

В этой статье будет подробно описан механизм работы слоя GCN с объяснением его внутреннего устройства.
Кроме того, вы узнаете, как практически применять этот слой для решения задач классификации узлов с использованием в качестве инструмента PyTorch Geometric.

PyTorch Geometric (PyG) — это специализированное расширение PyTorch, созданное для разработки и реализации GNN. Эта продвинутая и в то же время удобная в использовании библиотека предоставляет полный набор инструментов для машинного обучения на основе графов.


Графовые сверточные сети: введение в GNN  Графовые нейронные сети (GNN) представляют собой одну из наиболее интересных и быстро развивающихся архитектур в области глубокого обучения.
1 минута