Найти тему
10,2 тыс подписчиков

Поиск ошибок в логике работы чат-бота с помощью TF-IDF и DBSCAN


Добрый день! В посте, на примере задачи поиска логических ошибок робота, я продемонстрирую, как методы тематического моделирования помогут исследователя при работе с большим объемом текстовых данных.

Задача тематического моделирования возникает очень часто, когда существует необходимость в обработке большого количества текстовой информации.

Тематическое моделирование – это разбиение коллекции текстовых документов на группы, в которых элементы имеют общую тематику. Стоит понимать, что один документ может иметь разные темы, в таком случае документ определяется распределением тематик, однако для нашей задачи крайне необходимо, чтобы документ однозначно принадлежал определенной группе. Использование метода предполагает то, что никаких дополнительных данных, кроме самого текста не используется.

Способов применения тематического моделирования в реальных задачах множество. Например, вы можете автоматически определять тематику письма в электронной почте, а после ранжировать его.

В задаче информационного поиска тематическое моделирование позволяет более качественно отбирать информацию по текстовому запросу. Исследователям, которые работают с текстовой информацией просто необходим инструмент, который может структурировать объемные текстовые массивы. Интересно и то, что предметом исследования может быть не только человеческий язык, но и любые текстоподобные данные: программный код, банковские транзакции, музыкальные произведения.


Поиск ошибок в логике работы чат-бота с помощью TF-IDF и DBSCAN  Добрый день!
1 минута