Найти тему

Рассмотрим следующую задачу на теорию вероятности из профильного ЕГЭ по математике.


Биатлонист 5 раз стреляет по мишеням. Вероятность попасть в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал по мишени, а последние 2 раза промахнулся. Результат округлить до сотых.

Решение Если вероятность попасть в мишень 0,8, то вероятность промахнуться 1-0,8=0,2. Теперь, нас интересует случай, когда И первый И второй И третий выстрелы точны, а четвёртый И пятый выстрелы являются промахами. Когда у нас появляется "алгоритм И" в теории вероятности, мы должны вероятности умножать, поэтому искомая вероятность равна:

0,8•0,8•0,8•0,2•0,2=0,02048.

Округляем до сотых и получаем: 0,02.

Ответ: 0,02.
Рассмотрим следующую задачу на теорию вероятности из профильного ЕГЭ по математике. Биатлонист 5 раз стреляет по мишеням. Вероятность попасть в мишень при одном выстреле равна 0,8.
Около минуты
657 читали