Найти в Дзене
Елизавета Сергеевна

Уравнение, решаемое через систему в задании 20 | ОГЭ математика 2026

Сегодня разберем уравнение 4-й степени, которое решается нестандартным приёмом — переходом к системе квадратных уравнений. Решите уравнение (x² - 36)² + (x² + 4x - 12)² = 0 Проанализируем представленное уравнение. По сути, оно имеет вид Y² + Z² = 0, где Y = x² - 36, Z = x² + 4x - 12. Иными словами, это сумма квадратов каких-то выражений, которая равна нулю. Как известно, квадрат любого выражения неотрицателен, следовательно, сумма может быть равна нулю только в одном случае — когда оба слагаемых равны нулю одновременно. Тогда получим систему из двух уравнений: x² - 36 = 0 (1) x² + 4x - 12 = 0 (2) Решим первое уравнение. x² - 36 = 0 => (x - 6)(x + 6) = 0 => x = -6, x = 6 Решим второе уравнение. x² + 4x - 12 = 0 Выделим коэффициенты: a = 1, b = 4, c = -12. Затем найдём дискриминант: D = b² - 4ac = 4² - 4 * 1 * (-12) = 16 + 48 = 64. Следовательно, √D = 8. Найдём корни уравнения: x = (-b + √D) / 2a = (-4 + 8) / 2 = 4 / 2 = 2 x = (-b - √D) / 2a = (-4 - 8) / 2 = -12 / 2 = -6 Тогда x = 2, x
Оглавление

Сегодня разберем уравнение 4-й степени, которое решается нестандартным приёмом — переходом к системе квадратных уравнений.

Пример 1

Решите уравнение (x² - 36)² + (x² + 4x - 12)² = 0

Проанализируем представленное уравнение. По сути, оно имеет вид Y² + Z² = 0, где Y = x² - 36, Z = x² + 4x - 12. Иными словами, это сумма квадратов каких-то выражений, которая равна нулю. Как известно, квадрат любого выражения неотрицателен, следовательно, сумма может быть равна нулю только в одном случае — когда оба слагаемых равны нулю одновременно.

Тогда получим систему из двух уравнений:

x² - 36 = 0 (1)

x² + 4x - 12 = 0 (2)

Решим первое уравнение.

x² - 36 = 0 => (x - 6)(x + 6) = 0 => x = -6, x = 6

Решим второе уравнение.

x² + 4x - 12 = 0

Выделим коэффициенты: a = 1, b = 4, c = -12. Затем найдём дискриминант: D = b² - 4ac = 4² - 4 * 1 * (-12) = 16 + 48 = 64. Следовательно, √D = 8.

Найдём корни уравнения:

x = (-b + √D) / 2a = (-4 + 8) / 2 = 4 / 2 = 2

x = (-b - √D) / 2a = (-4 - 8) / 2 = -12 / 2 = -6

Тогда x = 2, x = -6.

В итоге получим корни первого уравнения x = -6 и x = 6 и корни второго уравнения x = 2 и x = -6. Решением системы является только общий корень, т.е. x = -6.

Ответ: x = -6

Пример 2

Решите уравнение (x² - 4)² + (x² - 3x - 10)² = 0

Аналогично примеру 1 проанализируем представленное уравнение и получим систему из двух уравнений:

x² - 4 = 0 (1)

x² - 3x - 10 = 0 (2)

Решим первое уравнение.

x² - 4 = 0 => (x - 2)(x + 2) = 0 => x = -2, x = 2

Решим второе уравнение.

x² - 3x - 10 = 0

Выделим коэффициенты: a = 1, b = -3, c = -10. Затем найдём дискриминант: D = b² - 4ac = (-3)² - 4 * 1 * (-10) = 9 + 40 = 49. Следовательно, √D = 7.

Найдём корни уравнения:

x = (-b + √D) / 2a = (3 + 7) / 2 = 10 / 2 = 5

x = (-b - √D) / 2a = (3 - 7) / 2 = -4 / 2 = -2

Тогда x = 5, x = -2.

В итоге получим корни первого уравнения x = -2 и x = 2 и корни второго уравнения x = 5 и x = -2. Решением системы является только общий корень, т.е. x = -2.

Ответ: x = -2

Алгоритм

Составим алгоритм решения задания, основанный на приведенных решениях:

  1. Провести анализ уравнения. Если оно имеет вид Y² + Z² = 0, то перейти к системе из двух уравнений: Y = 0 и Z = 0.
  2. Решить каждое уравнение системы.
  3. Выделить из полученных корней общий, который является решением обоих уравнений.
  4. Записать этот корень в ответ.

Итог

Таким образом, уравнение четвертой степени, решение которого на первый взгляд должно быть достаточно объемным, сначала подвергается анализу, который позволяет свести задачу к решению простых квадратных уравнений, избежав раскрытия скобок.

Иными словами, если в уравнении вы видите сумму квадратов, равную нулю, — такое уравнение можно решить через систему более простых уравнений.

P.S. Все задания взяты из открытого банка заданий ОГЭ.

Заключение

Для того, чтобы и дальше следить за публикациями на тему подготовки к ОГЭ по математике, подписывайтесь на мой канал. Также не забудьте посмотреть следующие полезные статьи:

Все для ОГЭ по математике 2025 в одной статье

Легальная шпаргалка для ОГЭ по математике 2025 : что такое справочные материалы и зачем они нужны

Как рассчитать свою оценку за ОГЭ по математике в 2025 году?