Найти в Дзене
ЭнергетикУм

ТОП-10 неочевидных химических элементов в энергетике

Мы привыкли связывать энергетику с углем, нефтью, газом и ураном. Но на самом деле ее фундамент сегодня — это химия материалов, редкие элементы и тонкая инженерия. Современная энергетика всё меньше зависит от сжигания топлива и всё больше — от свойств атомов, сплавов и кристаллов. Перед вами обзор десяти химических элементов, которые редко ассоциируются с энергетикой напрямую, но без которых современная энергосистема просто не смогла бы работать. Никель — ключевой элемент современных литий-ионных аккумуляторов. Он входит в состав катодов (NMC, NCA), повышая энергетическую плотность батарей. Именно никель позволяет электромобилям проезжать сотни километров на одном заряде и делает аккумуляторы более «ёмкими» при том же весе. В перспективе роль никеля будет только расти. Спрос на него напрямую связан с развитием электромобилей и систем хранения энергии. Главный вызов — экологичность добычи и переработки, поэтому всё больше внимания уделяется рециклингу батарей и поиску источников никеля
Оглавление
ТОП-10 неочевидных химических элементов в энергетике
ТОП-10 неочевидных химических элементов в энергетике

Мы привыкли связывать энергетику с углем, нефтью, газом и ураном. Но на самом деле ее фундамент сегодня — это химия материалов, редкие элементы и тонкая инженерия. Современная энергетика всё меньше зависит от сжигания топлива и всё больше — от свойств атомов, сплавов и кристаллов.

Перед вами обзор десяти химических элементов, которые редко ассоциируются с энергетикой напрямую, но без которых современная энергосистема просто не смогла бы работать.

10. Никель (Ni)

Никель — ключевой элемент современных литий-ионных аккумуляторов. Он входит в состав катодов (NMC, NCA), повышая энергетическую плотность батарей. Именно никель позволяет электромобилям проезжать сотни километров на одном заряде и делает аккумуляторы более «ёмкими» при том же весе.

В перспективе роль никеля будет только расти. Спрос на него напрямую связан с развитием электромобилей и систем хранения энергии. Главный вызов — экологичность добычи и переработки, поэтому всё больше внимания уделяется рециклингу батарей и поиску источников никеля с меньшим углеродным следом.

Никель (Nickel)
Никель (Nickel)

9. Медь (Cu)

Медь — это настоящая «кровеносная система» энергетики. Она используется в кабелях, трансформаторах, генераторах, электродвигателях и солнечных панелях. Высокая электропроводность делает медь незаменимой для передачи и распределения электроэнергии.

Энергетический переход превращает медь в стратегический ресурс. Электромобили требуют в 2–4 раза больше меди, чем автомобили с ДВС, а развитие ВИЭ и накопителей резко увеличивает спрос. В будущем ключевой задачей станет эффективная переработка меди и снижение потерь при ее использовании

Медь (Copper)
Медь (Copper)

8. Диспрозий (Dy)

Диспрозий добавляют в неодимовые магниты, чтобы они сохраняли свои свойства при высоких температурах. Это особенно важно для электродвигателей и генераторов, работающих под нагрузкой — например, в электромобилях и ветряных турбинах.

Спрос на диспрозий может вырасти по мере ужесточения требований к надёжности оборудования. Однако редкость этого элемента делает его потенциальным «узким местом» энергоперехода, поэтому активно ведутся исследования по снижению его содержания в магнитах или поиску альтернатив.

Диспрозий (Dysprosium)
Диспрозий (Dysprosium)

7. Индий (In)

Индий широко применяется в виде оксида индия-олова (ITO) — прозрачного проводящего слоя. Он используется в солнечных панелях, дисплеях и сенсорных поверхностях, сочетая прозрачность и электропроводность.

Перспективы индия связаны с развитием тонкопленочной солнечной энергетики и «умных» окон, способных не только пропускать свет, но и генерировать электроэнергию прямо в зданиях.

Индий (Indium)
Индий (Indium)

6. Галлий (Ga)

Галлий — ключевой элемент современной силовой электроники. Полупроводники на основе нитрида галлия (GaN) применяются в инверторах, зарядных станциях и блоках питания для ВИЭ и электромобилей.

В энергетике будущего GaN-технологии позволяют снижать потери энергии и уменьшать размеры оборудования. Это критично для быстрых зарядок, солнечных инверторов и энергосетей нового поколения, поэтому значение галлия будет только расти.

Галий (Gallium)
Галий (Gallium)

5. Платина (Pt)

Платина — основной катализатор в водородных топливных элементах и электролизерах. Она ускоряет химические реакции, практически не расходуясь, что делает возможным эффективное производство электричества и водорода.

Будущее платины тесно связано с развитием водородной энергетики. Главная задача — сократить ее количество в устройствах или найти альтернативы, поскольку платина дорога и редка. Тем не менее в ближайшие десятилетия без неё водородный сектор обойтись не сможет.

Платина (Platinum)
Платина (Platinum)

4. Цинк (Zn)

Цинк широко используется для защиты стали от коррозии — от опор линий электропередачи до корпусов ветряных турбин. Кроме того, он применяется в цинк-воздушных и цинк-ионных аккумуляторах.

В перспективе цинковые батареи рассматриваются как более безопасная и дешёвая альтернатива литиевым для стационарного хранения энергии. Они менее пожароопасны и основаны на более доступном сырье.

Цинк (Zink)
Цинк (Zink)

3. Бор (B)

Бор применяется в стекле для солнечных панелей, где он повышает термостойкость и прочность. Также бор играет важную роль в ядерной энергетике, выступая поглотителем нейтронов и элементом систем безопасности.

В будущем бор будет востребован в термостойких материалах, новых накопителях энергии и реакторах следующего поколения. Его вклад редко заметен, но именно он обеспечивает надежность энергетических систем.

Бор (Boron)
Бор (Boron)

2. Ванадий (V)

Ванадий — ключевой элемент ванадиевых редокс-батарей, которые используются для крупномасштабного накопления энергии. В таких системах энергия хранится в жидких электролитах, что позволяет практически неограниченное число циклов заряда и разряда без деградации.

Эти батареи особенно перспективны для балансировки солнечных и ветровых электростанций. Ванадиевые накопители безопасны, долговечны и хорошо подходят для работы в энергосетях, где важна надежность, а не компактность.

Ванадий (Vanadium)
Ванадий (Vanadium)

1. Гафний (Hf)

Гафний применяется в ядерной энергетике благодаря способности эффективно поглощать нейтроны. Он используется в управляющих стержнях реакторов и в высокотемпературных сплавах.

Перспективы гафния связаны с развитием новых типов ядерных реакторов и материалов для экстремальных условий. Несмотря на высокую стоимость, в критически важных зонах он остается незаменимым.

Гафний (Hafnium)
Гафний (Hafnium)

Вопрос атомов

Современная энергетика все меньше похожа на мир дымящихся труб и все больше — на сложную мозаику из материалов, технологий и химических элементов. Часто именно «второстепенные» элементы определяют, насколько эффективной, устойчивой и надежной будет энергетическая система будущего.

Энергопереход — это не только вопрос источников энергии, но и вопрос атомов. И чем глубже мы понимаем роль этих незаметных элементов, тем лучше можем подготовиться к миру, где энергия станет чище, сложнее и технологичнее.

Больше интересной информации про источники энергии и энергетику в телеграм-канале ЭнергетикУм