⚡️ Математический roadmap для ML специалистов: от линала до теорвера
Это подробный гайд по математическому фундаменту, необходимому для понимания работы алгоритмов «под капотом». Материал полезен тем, кто хочет углубиться в теорию дальше вызова .fit() в scikit-learn.
Ключевые поинты:
* Структура: Roadmap базируется на трех дисциплинах:
1. Linear Algebra: Язык описания данных и моделей (векторы, матрицы, тензоры).
2. Calculus: Инструментарий для обучения и оптимизации (производные, градиенты).
3. Probability Theory: Фреймворк для оценки неопределенности.
Подход: Автор делает упор на интуицию, а не на заучивание формул.
Гайд связывает абстрактную математику с конкретными ML-задачами - от понимания того, как работает Backpropagation и SGD, до причин взрыва градиентов и выбора функции потерь.
🔗 Читать полную версию: https://thepalindrome.org/p/the-roadmap-of-mathematics-for-machine-learning
🔗 Мат база на русском: https://stepik.org/course/226596/info