Найти в Дзене

Окислительный (OXPHOS-зависимый) фенотип опухоли: энергетическая адаптация и терапевтические возможности

Окислительный (OXPHOS-зависимый) фенотип опухоли: энергетическая адаптация и терапевтические возможности Современные исследования подтверждают, что опухолевые клетки могут использовать разные типы энергетического обмена для поддержания роста, инвазии и выживания в неблагоприятных условиях. Наряду с классическим гликолитическим фенотипом, при котором преобладает аэробный гликолиз (эффект Варбурга), существует и другой, не менее важный тип — окислительный или OXPHOS-зависимый фенотип. OXPHOS (oxidative phosphorylation — окислительное фосфорилирование) — это основной митохондриальный путь синтеза энергии, при котором АТФ образуется благодаря передаче электронов по дыхательной цепи и работе АТФ-синтазы. В опухолях с этим фенотипом митохондрии не только активны, но и играют ключевую роль в выживании и агрессии клеток. Ранее считалось, что раковые клетки в целом «отказываются» от митохондрий в пользу гликолиза, но сегодня ясно, что OXPHOS-зависимые опухоли — это отдельный метаболический клас
Оглавление

Окислительный (OXPHOS-зависимый) фенотип опухоли: энергетическая адаптация и терапевтические возможности

Введение

Современные исследования подтверждают, что опухолевые клетки могут использовать разные типы энергетического обмена для поддержания роста, инвазии и выживания в неблагоприятных условиях. Наряду с классическим гликолитическим фенотипом, при котором преобладает аэробный гликолиз (эффект Варбурга), существует и другой, не менее важный тип — окислительный или OXPHOS-зависимый фенотип.

OXPHOS (oxidative phosphorylation — окислительное фосфорилирование) — это основной митохондриальный путь синтеза энергии, при котором АТФ образуется благодаря передаче электронов по дыхательной цепи и работе АТФ-синтазы. В опухолях с этим фенотипом митохондрии не только активны, но и играют ключевую роль в выживании и агрессии клеток.

Ранее считалось, что раковые клетки в целом «отказываются» от митохондрий в пользу гликолиза, но сегодня ясно, что OXPHOS-зависимые опухоли — это отдельный метаболический класс, встречающийся в ряде новообразований, включая меланому, рак поджелудочной железы, молочной железы (особенно подтип Luminal A), а также в метастатических формах рака лёгких и яичников.

Метаболические особенности OXPHOS-зависимого фенотипа

Главная особенность данного фенотипа — высокая активность митохондриального дыхания и зависимость клеток от окислительного фосфорилирования как основного источника энергии.

Ключевые характеристики:

  1. Повышенное потребление кислорода — клетки демонстрируют высокие значения OCR (oxygen consumption rate), что отражает активность дыхательной цепи.
  2. Усиленная активность комплекса I митохондрий — основной источник образования АТФ и реактивных форм кислорода (ROS).
  3. Низкий уровень гликолитических ферментов (LDHA, HK2) и повышенная экспрессия митохондриальных ферментов (CS, SDHA, COXIV).
  4. Гибкость энергетического обмена — OXPHOS-опухоли могут использовать не только глюкозу, но и глутамин, жирные кислоты и кетоновые тела как источники энергии.
  5. Умеренная гипоксия — такие опухоли часто формируются в относительно хорошо васкуляризованных зонах, где есть доступ к кислороду.
  6. Высокая митохондриальная масса — подтверждается окрашиванием MitoTracker и повышенной экспрессией митохондриального ДНК.

OXPHOS-зависимый фенотип часто ассоциируется с медленно растущими, но терапевтически устойчивыми опухолями, особенно в случаях, когда они подвергались длительной химиотерапии или таргетной терапии. Это объясняется тем, что клетки с активным митохондриальным дыханием обладают развитой антиоксидантной системой и эффективной утилизацией ROS.

Диагностика

Определение OXPHOS-зависимого фенотипа требует специальных методов оценки митохондриальной активности.

  1. Seahorse XF-анализатор — «золотой стандарт» для оценки дыхательной активности клеток. Измеряется показатель OCR (oxygen consumption rate) и рассчитывается соотношение OCR/ECAR (гликолиз). Преобладание OCR указывает на митохондриальную зависимость.
  2. Спектрофотометрия и флуоресцентная микроскопия — позволяют оценить активность комплексов I–IV дыхательной цепи и количество митохондрий.
  3. Иммуногистохимия (ИГХ) — маркеры SDHA, NDUFS1, COXIV, TOMM20, CPT1A (для жирных кислот) указывают на активность окислительного обмена.
  4. МР-спектроскопия in vivo — позволяет оценить уровень NAD⁺/NADH, фосфокреатина и других метаболитов митохондриального происхождения.
  5. Генетические панели — определяют экспрессию генов, регулирующих митохондриальную биогенез (PGC-1α, TFAM, NRF1).

Терапевтические стратегии при OXPHOS-зависимых опухолях

Цель метаболической терапии в данном случае противоположна подходу к гликолитическому фенотипу. Если при гликолизе важно активировать митохондрии и усилить окислительный стресс, то при OXPHOS-зависимом типе требуется ингибировать митохондриальное дыхание, вызвать энергетический кризис и увеличить прооксидантную нагрузку до токсического уровня.

Основные направления терапии:

  1. Ингибирование комплекса I митохондрий — ведёт к снижению синтеза АТФ и накоплению ROS.
  2. Нарушение транспорта электронов и мембранного потенциала — приводит к апоптозу.
  3. Снижение синтеза жирных кислот и глутаминолиза — ограничивает альтернативные источники топлива.
  4. Усиление прооксидантного стресса — комбинирование ингибиторов дыхания с высокими дозами аскорбата или прооксидантных препаратов.

Препараты с высокой доказанностью

1. Метформин

Метформин, широко известный как противодиабетический препарат, проявил выраженные митохондриально-направленные антиопухолевые свойства.

Механизм действия:

  • ингибирует комплекс I дыхательной цепи (NADH-дегидрогеназу);
  • активирует AMPK, что тормозит mTOR и синтез белков;
  • вызывает энергетическое истощение и повышает уровень ROS;
  • усиливает апоптоз в условиях дефицита питательных веществ.

Эффекты:

  • снижение роста опухоли и метастазирования в моделях меланомы, рака лёгких, молочной железы;
  • повышение чувствительности к химиотерапии и облучению;
  • благоприятный профиль безопасности и переносимости.

2. Фенформин

Фенформин — структурный аналог метформина, обладающий более выраженным митохондриальным действием.

Механизм:

  • мощное ингибирование комплекса I, вызывающее резкое снижение АТФ и повышение AMP/ATP-соотношения;
  • усиление прооксидантного стресса и активация апоптоза;
  • подавление сигнальных путей HIF-1α и mTOR.

Преимущества:

  • более сильное антиопухолевое действие, чем у метформина;
  • активность против резистентных клеток с высоким уровнем OXPHOS.

Ограничения:

  • риск лактатацидоза при высоких дозах, что требует осторожности при клиническом применении.

3. IACS-010759

IACS-010759 — инновационный ингибитор комплекса I дыхательной цепи, разработанный специально для онкологических исследований (MD Anderson Cancer Center).

Механизм:

  • селективное связывание с NADH-дегидрогеназой, блокада потока электронов;
  • снижение митохондриального потенциала и синтеза АТФ;
  • накопление ROS и активация апоптоза.

Доказательная база:

  • продемонстрировал выраженный противоопухолевый эффект в моделях рака лёгких, острого миелоидного лейкоза (AML) и глиобластомы;
  • при применении в низких дозах не оказывает существенного влияния на нормальные клетки;
  • проходит клинические испытания фазы I/II (NCT03291938).

Препараты со средней доказанностью

Арсенат триоксида (As₂O₃)

Арсенат триоксида — соединение, традиционно применяемое в терапии промиелоцитарного лейкоза, но также обладающее митохондриально-направленным действием.

Механизм:

  • ингибирует комплекс II и III дыхательной цепи;
  • вызывает потерю митохондриального мембранного потенциала;
  • усиливает образование ROS;
  • подавляет экспрессию антиапоптотических белков (Bcl-2, Mcl-1).

Эффекты:

  • в низких дозах проявляет селективность к клеткам с высоким уровнем митохондриального дыхания;
  • вызывает апоптоз в клетках рака яичников, лёгких и гепатоцеллюлярной карциномы;
  • в комбинации с метформином или фенформином усиливает прооксидантный стресс.

Перспективы комбинированной терапии

OXPHOS-зависимые опухоли отличаются устойчивостью к традиционной химиотерапии, но уязвимы при комплексном воздействии на митохондрии и антиоксидантные системы. Наиболее перспективными считаются следующие стратегии:

  • Метформин + арсенат триоксида — двойное ингибирование дыхательной цепи (комплексы I и II) и усиление ROS-стресса;
  • Фенформин + DCA — фенформин нарушает дыхательную цепь, а DCA, активируя PDH, способствует перераспределению пирувата в митохондрии, усиливая митохондриальную нагрузку;
  • IACS-010759 + ингибиторы глутаминазы (CB-839) — комбинированное ограничение митохондриального метаболизма и глутаминолиза;
  • Метформин + высокодозный аскорбат — потенцирование прооксидантного эффекта и разрушение опухолевых клеток через окислительное повреждение.

Такие схемы позволяют вызывать селективный метаболический коллапс в опухолевых клетках без значительного вреда для здоровых тканей.

Заключение

Окислительный (OXPHOS-зависимый) фенотип опухоли представляет собой метаболическую стратегию выживания, основанную на активной работе митохондрий. Эти опухоли менее подвержены гипоксии, устойчивы к ряду химиопрепаратов, но уязвимы к митохондриально-направленным ингибиторам.

Современные препараты — метформин, фенформин и IACS-010759 — доказали свою эффективность в подавлении митохондриального дыхания, индуцировании апоптоза и повышении чувствительности опухолевых клеток к терапии. Среднеподтверждённые агенты, такие как арсенат триоксида, также находят своё место в комбинированных протоколах, усиливая окислительный стресс.

Таким образом, метаболическая терапия OXPHOS-фенотипа открывает новое направление в онкологии, позволяющее воздействовать на энергетические основы опухолевого роста. Понимание различий между гликолитическим и окислительным фенотипами становится ключом к персонализированному выбору метаболических препаратов и повышению эффективности противоопухолевого лечения.