Сразу скажу - здесь вы не найдёте рецептов "расширить сознание", "перейти на новую ступень", "заглянуть за грань", "раствориться в беспредельном космосе". И прочей ерунды, которой переполнен интернет. Я разберу вполне научные теории уважаемых ученых (один из них - нобелевский лауреат). И объясню, почему они ближе к фантастике, чем к реальности.
Интерпретации квантовой механики
Начну с того, что в квантовой физике существуют разные "интерпретации". Это совокупность непротиворечивых представлений (главным образом, философских) о сущности квантовой механики как физической теории, описывающей материальный мир. Они решают такие философские проблемы, как вопрос о природе физической реальности и способе её познания, о характере детерминизма и причинности, о сущности и месте статистики в квантовой механике.
К настоящему времени существует несколько десятков известных интерпретаций разной степени «безумности». Меня будут интересовать две наиболее популярные на данный момент интерпретации – Копенгагенская (в различных вариантах) и многомировая интерпретация Эверетта.
Проблема с "квантовым сознанием" в том, что согласно Копенгагенской интерпретации некорректно рассматривать с точки зрения квантовой механики макроскопические системы (либо, по другой версии, незамкнутые системы, которыми являются практически все макроскопические системы). А сознание наблюдателя, который и "создаёт", согласно этой интерпретации, реальность в процессе наблюдения (измерения), должно описываться с позиций классической физики.
Не лучше обстоит дело и с многомировой интерпретацией Эверетта - в некоторых её вариантах само сознание аксиоматически наделяется свойством «селекции альтернатив» среди множества невзаимодействующих "миров", возникающих при каждом измерении. И, тем самым, сознание также выводится за рамки непосредственного рассмотрения.
Тем не менее, теории «квантового мозга» и «квантового сознания» существуют, и я перехожу к их рассмотрению.
Квантовый мозг
Интуитивно очевидно, что сознание, чем бы оно ни было на самом деле, это активно взаимодействующая с окружением незамкнутая макросистема, а с описанием таких систем в квантовой механике возникают серьёзные трудности. Можно ли обойти существующие ограничения?
Широкое распространение получил «физикалистский» подход. Он основан на убеждении, что сознание есть прямая производная мозга и происходящих в нём процессов. В рамках этого подхода в мозге пытаются найти химические/молекулярные структуры, делающие его похожим на квантовый компьютер, главным образом, с точки зрения квантовой когерентности и способности к параллельным вычислениям.
Таким образом, сначала исследование сознания подменяется исследованием мозга как его материального носителя. Далее делается предположение, что он (мозг) функционирует по квантово-механическим алгоритмам на основе некоторых структур, которые просто надо в мозге найти. Из чего делается совсем неочевидный вывод, что природа каким-то образом смогла обойти ограничения, которые налагает квантовая механика на проявление квантовых эффектов (когерентности, запутанности и т.п.) в условиях высоких температур и плотного окружения. На этом основании такие ограничения, практически, игнорируются. Предлагаю посмотреть, к чему такая некорректность ведёт.
Теория Пенроуза-Хамероффа
Одним из первых по этому пути пошёл Роджер Пенроуз, довольно неординарный и разносторонний учёный. Он скорее математик, чем физик (по крайней мере, он сам себя так называет). Его основные работы связаны с математическими моделями в теории относительности и чёрных дыр (он получил в 2020 году Нобелевскую премию по физике за «открытие того, что образование черной дыры является надежным предсказанием общей теории относительности»). Однако, время от времени он «воспаряет мыслью», публикуя неоднозначные (с точки зрения научной строгости) работы. Так, он опубликовал (в нерецензируемых препринтах) в соавторстве с армянским физиком карту реликтового излучения, аномалии на которой интерпретируются как следы существовавших в предыдущем эоне Вселенной высокоразвитых технологических сообществ. Его теория сознания, как мы увидим, также не вполне логически стройная и аргументированная.
В своих книгах «Новый ум короля» (1989) и «Тени разума» (1994) он подробно анализирует место квантовой механики в системе наших знаний о мире и указывает на её недостаточность и необходимость более общей квантовой теории («новой физики»), которая включала бы в себя эффекты гравитации и объясняла бы редукцию волновой функции. Именно новая физика, по мнению Пенроуза, необходима для понимания разума. Свои мысли он изложил в объёмной, но довольно невнятной книге «Новый ум короля», которая представляет собой некое эклектичное собрание сведений Пенроуза о современной физике, в том числе (и главным образом) результатов, полученных им лично. Основную проблему он видит в «невычислимости» сознания (которую он пытается обосновать с помощью теоремы Гёделя о неполноте). Возможны ли такие квантовые эффекты (например, нелокальность и квантовый параллелизм) в мозге? Пенроуз отвечает – без должного «экранирования» квантового состояния от окружения такие эффекты мгновенно затеряются в присущей этому окружению хаотичности.
Стюарт Хамерофф, занимавшийся исследованиями рака и анестезией (русская Wiki считает его основателем нанобиологии), прочитав книгу Пенроуза, предположил, что микротрубочки внутри нейронов являются подходящими кандидатами для квантовой обработки и, в конечном счете, для «аппаратной реализации» сознания. На протяжении 1990-х годов эти двое сотрудничали над теорией Orch OR (orchestrated objective reduction), начальную версию которой Пенроуз опубликовал в книге «Тени разума». Эта книга более предметна, чем первая, и рассматривает конкретные механизмы, реализующие в мозге квантовые эффекты.
Первоначальная версия теории Orch OR, изложенная в книге «Тени разума», затем подверглась кардинальным уточнениям (во многом, из-за многочисленных критических замечаний) и в окончательном виде сформулирована Пенроузом и Хамероффом в обширной публикации 2014 года в любопытном журнале Physics of Life Reviews.
Теория Orch OR объединяет аргумент Пенроуза–Лукаса (о том, что мозг работает по невычислимому алгоритму) с гипотезой Хамероффа о квантовой обработке в микротрубочках. Она предполагает, что, когда конденсаты в мозге подвергаются объективной редукции (коллапсу) волновой функции, их коллапс связывает принятие невычислимых решений с опытом, отражающим фундаментальную геометрию пространства-времени. Теория далее предполагает, что микротрубочки как сами влияют, так и находятся под влиянием обычной активности в синапсах между нейронами.
Теория Фишера
Мэтью Фишер, физик из Калифорнийского университета в Санта-Барбаре, опубликовал в 2015г. статью, в которой предлагалось, что ядерные спины атомов фосфора могут служить рудиментарными «кубитами» в мозге, что, по сути, могло бы позволить мозгу функционировать как квантовый компьютер.
Фишер обнаружил два вещества, схожих во всех важных отношениях, за исключением квантового спина, и выяснил, что они могут оказывать очень разные эффекты на поведение. Тем не менее, переход от интригующей гипотезы к фактической демонстрации того, что квантовая обработка данных играет роль в мозге, является сложной задачей. Мозг должен хранить квантовую информацию в кубитах в течение достаточно длительного времени. Кроме того, должен существовать механизм для запутывания нескольких кубитов, и для этого запутывания должны быть какие-то химически возможные средства влияния на то, как срабатывают нейроны. Также должны быть какие-то средства передачи квантовой информации, хранящейся в кубитах, по всему мозгу.
В ходе своих пятилетних поисков Фишер определил только одного надежного кандидата для хранения квантовой информации в мозге: атомы фосфора, которые являются единственным распространенным биологическим элементом, кроме водорода, с полуцелым спином, что делает возможным более длительное время когерентности. Фосфор не может создать стабильный кубит сам по себе, но, по словам Фишера, время его когерентности может быть увеличено, если связать фосфор с ионами кальция с образованием кластеров.
В 1975 году Аарон Познер (Aaron Posner) из Корнельского университета, заметил странное скопление атомов кальция и фосфора на рентгеновских снимках костей. Он нарисовал структуру этих кластеров: девять атомов кальция и шесть атомов фосфора, позже названных в его честь «молекулами Познера» - Ca9(PO4)6.
Кластеры снова появились в 2000-х годах, когда ученые, моделирующие рост костей в искусственной жидкости, заметили, что они плавают в этой жидкости. Последующие эксперименты показали наличие скоплений в человеческом теле. Фишер считает, что молекулы Познера также могут служить естественным кубитом в мозгу. Ни у атомов кальция, ни у атомов кислорода нет ядерного спина, что позволяет сохранить половину полного спина, что имеет решающее значение для увеличения времени когерентности. Таким образом, эти кластеры защищают запутанные пары от внешнего вмешательства, так что они могут поддерживать когерентность в течение гораздо более длительных периодов времени - по приблизительным оценкам Фишера, это может длиться часы, дни или даже недели.
Если это так, то запутанность может распространяться на довольно большие расстояния в головном мозге, влияя на высвобождение нейротрансмиттеров и срабатывание синапсов между нейронами.
Подробный анализ использования молекул Познера для квантовой обработки информации в мозге (в предположении, что гипотеза Фишера верна) сделан в работе (Halpern, 2019), краткий перевод которой можно найти здесь.
Сам Фишер, проводя многочисленные эксперименты по проверке своей гипотезы, считает, что отрицательный результат тоже будет важен:
Я считаю, что если ядерный спин фосфора не используется для квантовой обработки, то квантовая механика не работает в долгосрочных масштабах в познании. Исключение этого важно с научной точки зрения. Было бы хорошо, если бы наука об этом узнала.
Критика теорий «квантового мозга».
Теория Пенроуза-Хамероффа широко обсуждается в сотнях публикаций и неоднократно подвергалась критическому рассмотрению. Гипотеза Фишера появилась сравнительно недавно и пока привлекла меньше внимания. Однако, многие критические соображения по поводу теории Пенроуза-Хамероффа с полным основанием можно отнести и к гипотезе Фишера.
Главным препятствием для «квантового» мозга является феномен квантовой декогеренции. Чтобы построить действующий квантовый компьютер, необходимо соединить кубиты - квантовые биты информации - в процессе квантовой запутанности. Но запутанные кубиты – система довольно хрупкая. Она должна быть тщательно защищена от любого шума/воздействия из окружающей среды. Всего одного фотона, провзаимодействовавшего с кубитом, будет достаточно, чтобы заставить всю систему «декогерировать», разрушив запутанность и уничтожив квантовые свойства системы. Достаточно сложно проводить квантовые вычисления в тщательно контролируемой лабораторной среде, не говоря уже о теплом, влажном и сложном беспорядке, который представляет собой человеческая биология, где поддержание когерентности в течение достаточно длительных периодов времени практически невозможно.
Наиболее содержательный, на мой взгляд, анализ возможности функционирования мозга в квантовом режиме провёл в 2000 году Макс Тегмарк, профессор из MIT, один из влиятельных сторонников интерпретации Эверетта. Он представил расчёты того, что любая квантовая когерентная система в мозге подвергнется эффективному коллапсу волновой функции из-за взаимодействия с окружающей средой задолго до того, как она сможет повлиять на нейронные процессы (позднее этот аргумент назвали - "тепло, влажно и шумно"). Вывод Тегмарка таков:
Основываясь на расчете скорости нейронной декогеренции, мы утверждаем, что степени свободы человеческого мозга, связанные с когнитивными процессами, следует рассматривать как классическую, а не квантовую систему... Мы находим, что шкала времени декогеренции ( ∼ 10-13 − 10-20 секунды), как правило, намного короче, чем соответствующие динамические временные рамки ( ∼ 10−3 − 10−1 секунды), как для регулярного возбуждения нейронов, так и для поляризационных возбуждений, подобных изгибу, в микротрубочках. Этот вывод не согласуется с предположениями Пенроуза и других о том, что мозг действует как квантовый компьютер и что квантовая когерентность фундаментальным образом связана с сознанием
Дополнительные соображения по поводу рассмотрения мозга как квантового компьютера приводят авторы «скептического взгляда» из книги «Quantum aspects of life» (Wiseman, 2007):
Квантовые вычисления требуют громоздкой процедуры коррекции ошибок, с учётом которой выигрыш, который они могли бы дать над классическими вычислениями, возможен лишь для крупноразмерных задач, которые вряд ли встречаются у биологических объектов. Поэтому, вряд ли бы квантовый мозг смог обеспечить своему носителю реальное эволюционное преимущество в процессе естественного отбора.
Квантовые компьютеры могут решать лишь специфические задачи (например, факторизацию больших чисел по алгоритму Шора). Но реальные биообъекты вряд ли используют RSA-шифрование в общении. Есть ещё алгоритм поиска Гровера, но он ищет не в классической, а в квантовой базе данных и даёт лишь квадратичное преимущество в скорости в реальных задачах типа поиска оптимального маршрута в сети. Поэтому, с учётом ошибок, задачи, на которых он будет давать какое-то преимущество должны быть очень велики, что не даст эволюционного преимущества.
Они делают вывод о сомнительной пользе квантовых вычислений для мозга и его носителей:
Неужели энтузиасты биологических квантовых вычислений воображают, что животные приобрели способность отправлять друг другу зашифрованные RSA-сообщения, а затем развили средства для их подслушивания с помощью квантовых вычислений?
Наконец, исчерпывающая и подробная критика теории Пенроуза и Хамероффа дана в работе (McKemmish, 2009) с говорящим названием: «Теория человеческого сознания orch OR Пенроуза-Хамероффа биологически неосуществима».
Основная проблема теорий квантового мозга состоит даже не в малых временах декогеренции или физической осуществимости кубита на основе тубулина (по конформационой или спин-дипольной модели) или молекул Познера (хотя уже эти возражения составляют для таких теорий мало преодолимое препятствие), а в аргументах Wiseman`a о крайней сомнительности пользы квантовых вычислений для мозга и человеческой эволюции.
Концепция квантового сознания М.Б.Менского
Свою концепцию Менский (профессор, д.ф.-м.н., работал в ФИАН им.Лебедева главным научным сотрудником. Умер в 2015г.) сначала опубликовал в журнале УФН (Менский, 2005), а затем, в расширенном варианте, в книге «Сознание и квантовая механика» (Менский, 2011). Основываясь, фактически, на интерпретации Эверетта, Менский развивает тот её вариант, который называется «много-разумной (many-minds)» интерпретацией.
Менский исходит из того, что «редукция состояния (коллапс волновой функции), фигурирующая в общепринятом описании квантового измерения, является по сути дела отступлением от квантовой механики. Для оправдания этой процедуры требуется апеллировать к чему-то, лежащему вне квантовой механики». Но вместо апелляции к понятию "классический прибор " (как в Копенгагенской интерпретации квантовой механики), взаимодействие с которым каким-то таинственным образом нарушает линейность квантовой механики, можно апеллировать к понятию "сознание наблюдателя", явным образом введя его в описание измерения. Так делается в интерпретации Эверетта (в её many-minds толковании).
Основные тезисы теории Менского:
1.Набор альтернатив, характерный для квантовой теории измерений, интерпретируется как множество равноправных проекций квантового мира, называемых эвереттовскими мирами.
2. Разделение квантового мира на альтернативы отождествляется с функцией живых организмов, называемой сознанием.
3. Классический характер каждой из альтернатив, на которые квантовый мир расслаивается сознанием, определяется тем, что обеспечивает стабильность и предсказуемость окружающего мира, как он воспринимается сознанием, что является необходимым условием жизни.
4. В особых состояниях (на грани бессознательного) индивидуальное сознание получает доступ к квантовому миру за рамками одной классической проекции. Это может объяснять наблюдаемые иногда необычные явления в области психики, которые играют центральную роль в ненаучных формах познания духовной жизни человека (восточные философии, религия).
Вывод, к которому приходит Менский:
сознание .. некое явление, которое можно описать феноменологически, но нельзя вывести из известных свойств (квантовой) материи
Основные итоги
Итак, рассмотрев два подхода к исследованию сознания с точки зрения квантовой физики, могу констатировать наличие серьёзных, я бы сказал, концептуальных, трудностей на этом пути.
Во-первых, если вы в исследовании придерживаетесь Копенгагенской интерпретации, то само сознание наблюдателя выводится за рамки детального анализа. Его роль сводится к редукции волнового пакета, а сам наблюдатель (со своим сознанием) должен описываться уже классической физикой. Кроме того, сознание является макросистемой, так что и поэтому тоже не подлежит рассмотрению при строгом подходе. Хорошо, пойдя на компромисс, игнорируя накладываемые теорией ограничения, и допустив полуклассическое, квазиклассическое и т.п. описание мозга (как продуцента сознания), вы пытаетесь найти на определенных временных и/или пространственных интервалах признаки квантового поведения структурных элементов мозга. Вы понимаете, что «теплота» и плотная упаковка молекул в мозге оставляет вам совсем мало шансов найти нечто «квантово-нетривиальное». И, действительно, за исключением пары-тройки не совсем безумных гипотез (Пенроуз, Фишер и т.п), которые всё ещё требуют тщательной экспериментальной проверки, ничего обнадёживающего найти не удаётся. Да и сами эти проверки остаются уделом немногих энтузиастов, не вызывая большого интереса научного сообщества в силу явно осознаваемой безнадёжности предприятия.
Во-втором подходе, вы переводите сознание из статуса атрибута материального объекта изучения в статус субъекта, практически, демиурга окружающей реальности. И, хотя, некоторые адепты интерпретации Эверетта отрицают центральную роль сознания в их теоретических построениях, но для неё естественным является как раз вывод, к которому приходит М.Менский, считающий сознание «функцией живых организмов, разделяющей квантовый мир на альтернативы». При таком подходе обсуждение физической природы сознания не представляется возможным: сознание можно «описать феноменологически, но нельзя вывести из известных свойств (квантовой) материи».
Однозначный вывод, который я аргументированно могу сделать - гипотезы учёных о квантовой природе мозга и сознания на данный момент ближе к добротной научной фантастике, а не к экспериментально проверяемой теории, адекватно описывающей реальность.