Найти в Дзене
Человек разумный

Квантовые эффекты в биологии

В последние годы стало модно рассуждать о "квантовости" всего - квантовые вычисления, квантовые компьютеры, квантовый мозг, квантовое сознание. Ну, о квантовых компьютерах пусть рассуждают другие (хотя, и мне есть что сказать). Я предметно разобрался с темой "квантовый "мозг" и "квантовое сознание". Но, прежде чем рассказать об этом, уместно выяснить - а как реально проявляются квантовые эффекты в биологии? Если они вообще проявляются. Рассуждая на тему квантовых эффектов в биологии, следует избегать упрощений и банальных констатаций, не добавляющих понимания механизмов функционирования сложноорганизованных биологических систем. Понятно, что квантовая механика способна описывать различные свойства элементарных частиц, атомов и молекул, а значит, в конечном счёте, как-​то определяет и свойства состоящих из них объектов, как живых, так и неживых. Это «глубокое» умозаключение не даёт, однако, никаких намёков на то, как именно её (квантовую механику) приспособить к описанию поведения живы
Оглавление

В последние годы стало модно рассуждать о "квантовости" всего - квантовые вычисления, квантовые компьютеры, квантовый мозг, квантовое сознание. Ну, о квантовых компьютерах пусть рассуждают другие (хотя, и мне есть что сказать). Я предметно разобрался с темой "квантовый "мозг" и "квантовое сознание". Но, прежде чем рассказать об этом, уместно выяснить - а как реально проявляются квантовые эффекты в биологии? Если они вообще проявляются.

Рассуждая на тему квантовых эффектов в биологии, следует избегать упрощений и банальных констатаций, не добавляющих понимания механизмов функционирования сложноорганизованных биологических систем. Понятно, что квантовая механика способна описывать различные свойства элементарных частиц, атомов и молекул, а значит, в конечном счёте, как-​то определяет и свойства состоящих из них объектов, как живых, так и неживых. Это «глубокое» умозаключение не даёт, однако, никаких намёков на то, как именно её (квантовую механику) приспособить к описанию поведения живых организмов, например, африканского слона на водопое.

Следующее замечательное определение «нетривиальности» квантовых эффектов для биологов взято из работы (Wiseman, H.M., Eisert, J., 2007. Nontrivial quantum effects in biology: A skeptical physicists’ view.)

…нетривиальный квантовый эффект в биологии - это тот, который убедит биологов, что им нужно пройти продвинутый курс квантовой механики и изучить гильбертово пространство, операторы и т.п., с тем чтобы они смогли понять этот эффект.

Пожалуй, первым попытался на концептуальном уровне описать живые системы чисто физическими методами один из создателей квантовой теории Эрвин Шрёдингер. Его книга «Что такое жизнь с точки зрения физики?» вышла в Англии в 1944г. Ответ на многообещающий вопрос, вынесенный в заглавие, автор подменил рассмотрением аппарата наследственности (в рамках известных на то время фактов о хромосомах, мутациях и т.п.) и пространными рассуждениями об «отрицательной энтропии» и «организации, поддерживаемой путём извлечения «упорядоченности» из окружающей среды». В итоге, он пришёл к выводу:

..всё известное нам о структуре живого вещества заставляет ожидать, что деятельность живого вещества нельзя свести к обычным законам физики. И не потому, что имеется какая-​​либо «новая сила» или что-​то ещё, управляющее поведением отдельных атомов внутри живого организма, но потому, что его структура отличается от всего изученного нами до сих пор в физической лаборатории
Эрвин Шрёдингер (Erwin Schrödinger)
Эрвин Шрёдингер (Erwin Schrödinger)

К «обычным законам физики» нельзя, а к необычным, квантовым? Шрёдингер не увидел необходимости привлекать арсенал методов квантовой физики к исследованию живых систем:

Протекающие в теле живого существа пространственно-​временные процессы, которые соответствуют его мышлению, самосознанию или любой другой деятельности…если не вполне строго детерминированы, то во всяком случае статистически детерминированы
Квантовая неопределённость, по моему мнению, не имеет принципиального значения для биологических процессов.

Здесь приходиться констатировать, что для перечисления примеров сколько-​нибудь успешного применения аппарата квантовой физики к живым системам хватит пальцев одной руки. И эти примеры кочуют из одной научно-​популярной статьи в другую. Очевидной причиной является некорректность применения квантового подхода к описанию макроскопических систем. Квантовая физика с успехом изучает изолированные микроскопические системы, как правило, в условиях глубокого вакуума и/или сверхнизких температур вблизи абсолютного нуля. Биологические системы являются слишком «теплыми» и активно взаимодействующими с окружением. Однако, в ряде специальных случаев «нечто квантовое» наблюдать всё-​таки можно.

Вот несколько примеров наименее спекулятивных эффектов. Но и в них критики указывают на недостаточную проработанность экспериментов либо оспаривают саму правомерность квантовой трактовки наблюдаемых явлений.

Процесс переноса электрона в фотосинтетических реакционных центрах.

В процессе фотосинтеза фотоны поглощаются молекулами хлорофилла, исполняющего роль «антенн», и порождают молекулярные возбуждения (экситоны). Они передаются в фотосинтетической мембране от одной «антенны» к другой, пока не попадут в реакционный центр, использующий их энергию в реакциях синтеза. Известно, что эффективность этого процесса близка к 100%, то есть энергия практически каждого поглощенного фотона достигает реакционного центра, а не теряется по пути.

-3

Понимание механизмов функционирования реакционных центров критически важно с точки зрения оптимизации солнечных фотоячеек (эффективность которых даже в лучших образцах на уровне 35% и менее). Одно время изучение переноса электрона в реакционных центрах пурпурных бактерий Rhodobacter Sphaeroides (которые устроены гораздо проще реакционных центров высших растений) входило в сферу моих научных интересов, и у меня есть статьи на эту тему в зарубежных научных журналах, поэтому я могу оценить масштаб и сложность проблемы.

Оказывается, что экситоны выбирают самый эффективный путь до реакционного центра, что породило гипотезу об их квантовой когерентности. Теоретическое моделирование показало, что при заданном пространственном расположении только специально подобранная квантовая связь между островками способна так быстро передавать возбужденное состояние. «Квантовость» здесь проявляется в том, что первоначальное возбуждение не прыгает с одного конкретного островка на другой. Оно делокализуется, одновременно идет по нескольким путям, и только под конец вдруг снова собирается вместе в единое возбуждение на нужном островке — это и есть, предположительно, квантовая когерентность. Такая когерентность сохраняется гораздо дольше, чем обычное время жизни когерентных состояний (порядка фемтосекунд в нормальных условиях) до момента декогеренции из-за теплового окружения. Более того, именно окружение (за счёт вибронного механизма) обеспечивает эффективный перенос энергии на таких длительных интервалах.

Магнитный «компас» птиц

Гипотеза о том, что мигрирующие птицы используют для ориентации магнитное поле Земли была предложена фон Миддендорфом ещё в 1859г. Впервые использование магнитного «компаса» европейской малиновкой было продемонстрировано в 1966.

-4

К настоящему времени известно, что около 50 разных организмов, включая птиц, млекопитающих, рептилий, рыб, ракообразных и насекомых, используют геомагнитное поле для ориентации и навигации. В качестве возможного механизма была предложена фотоиндуцированная магнито-​чувствительная реакция пары свободных радикалов, несущих неспаренные электроны, спин которых может, гипотетически, реагировать нужным образом на внешнее магнитное поле.

Долгое время было неясно, существует ли вообще такая реакция с нужной чувствительностью к магнитному полю. В публикации 2008г. в Nature (Maeda, 2008) была предложена возможная фотохимическая реакция, задействованная в этом механизме (правда, реакция искусственная, а температура её протекания слишком низкая). Проблема, однако, состоит в том, что магнитное поле Земли слишком слабое (∼50 μT) и пока нет экспериментального подтверждения какой-​либо реальной подобной реакции, протекающей in vitro при комнатных температурах.

Распознавание запахов, связанное с туннелированием электронов

Запах - жизненно важное чувство для животных. Основное объяснение запаха основано на распознавании молекул одоранта через характеристики их поверхности, например, форму, но некоторые эксперименты предполагают, что такое распознавание дополняется распознаванием вибрационных мод. Согласно этому предположению, обонятельный рецептор активируется переносом электронов под действием вибрационного возбуждения одоранта.

-5

Сотни и тысячи различных обонятельных рецепторов у животного распознают запахи в дискриминантном ландшафте, два основных измерения которого составляют поверхностные свойства молекул и частоты их вибрационных возбуждений. В 1996 греческий биофизик Лука Турин (Luca Turin) предложил вибрационный механизм обоняния (Turin, 1996). Для нескольких одорантов показано, что, действительно, может возникнуть сильное увеличение скорости туннелирования электронов из-за колебаний одоранта (туннелирование – чисто квантовый эффект преодоления частицей потенциального барьера в случае, когда её полная энергия меньше высоты барьера). Модель разработана для описания экспериментов, проведенных на плодовой мушке Drosophila melanogaster. В них ученые показали, что дрозофилы способны различать по запаху «легкие» и «тяжелые» изотопные формы одного и того же пахучего вещества. В опытах использовали различные изотопные варианты ароматического вещества ацетофенона, в которых часть «легких» изотопов водорода заменили на его «тяжелую» форму — дейтерий. По форме и химическим свойствам такие варианты молекул ничем друг от друга не отличаются, однако из-за разной массы они имеют разные колебательные энергии связей углерод-​водород.

Однако, большинство ученых относится к вибрационной теории скептически, и не без оснований. Например, исследование 2004 года, проведенное независимой группой ученых в Рокфеллеровском университете Нью-​Йорка, противоречило этой теории: добровольцы не смогли различить запах разных изотопных вариантов ацетофенона (вещество, использовавшееся в экспериментах с дрозофилами). Критики теории считают результаты эксперимента косвенными и не подтверждающими напрямую вибрационный механизм обоняния.

Конденсация Фрёлиха в белковых структурах

В 1968 г. Герберт Фрёлих (Herbert Fröhlich) предложил гипотетическую модель, согласно которой не вся энергия, передаваемая белку в ходе метаболизма, термализуется, а белковые структуры можно описать как группу связанных осцилляторов, помещенных в термостат, которые оказываются в одинаковых энергетических состояниях с минимальной энергией. Это явление, близкое по своей природе к Бозе-​Эйнштейновской конденсации в квантовых системах, получило название конденсации Фрёлиха (Fröhlich, 1968).

Хотя убедительных доказательств существования конденсата Фрёлиха нет, его гипотетические свойства довольно активно эксплуатируются в самых различных теоретических построениях. В своё время, идеи Фрёлиха возбуждали воображение медиков и психологов. На него часто ссылается мастер научного слова П.Гаряев (ныне, увы, покойный) в своей книге «Волновой геном». Упоминают о нём в рамках своей модели «квантового мозга» Р.Пенроуз и С.Хамерофф, о чём я буду писать далее.

Выводы о роли квантовых эффектов в биологии

Несмотря на существенные различия рассмотренных выше случаев, у них есть нечто общее в методологии. В реальных макроскопических биологических системах (на уровне их микроструктуры) отыскивается некий 100% КВАНТОВЫЙ эффект, хорошо изученный в микроскопических изолированных системах (спин, туннелирование, квантовая когерентность и т.п.). Очевидно, если уточнять картину до уровня молекул и атомов, то на некотором этапе тот или иной квантовый эффект будет найден. Остаётся центральный вопрос: как реально наблюдаемые свойства/параметры/величины биологических систем связаны и/или определяются найденными квантовыми эффектами? Ведь на макроуровне никакой «квантовости» не наблюдается.

Для того, чтобы добиться понимания связи квантовых и классических аспектов конкретных проблем в биологии предлагается упростить сложные квантово-​механические вычисления, выбрав путь создания контролируемых приближений к квантовой сложности путем введения классических или полуклассических процедур таким образом, чтобы сохранить фундаментальную основу реальности. Физики уже давно пытаются идти этим путём, смешивая в своих моделях классические, квазиклассические, полуклассические и полностью квантово-​механические описания динамики подсистем, на которые можно разбить сложную биологическую (и не только) макросистему.

Именно такой подход и реализован в трёх из четырёх рассмотренных случаев (конденсация Фрёлиха изначально описывает некую модельную систему с заданными свойствами), где последовательное квантово-​механическое описание полной системы не проводилось. Полученные результаты, однако, не убеждают биологов "взяться за изучение операторов и гильбертова пространства"

Подводя итоги, результаты поиска «квантовости», определяющей наблюдаемые свойства в конкретных биологических системах, меня не убедили, равно как и авторов статьи (Arndt, 2009), которые пишут:

Нам еще предстоит узнать об актуальности и эволюционных преимуществах квантовой физики в фотосинтезе, обонянии или магнитной ориентации птиц. Мы все еще не знаем, полезна ли квантовая запутанность на молекулярном уровне в условиях окружающей среды, может ли квантовая обработка информации быть реализована в органических системах.

Тем не менее, не получив убедительных результатов на сравнительно простых системах, некоторые физики решили перейти к сложным – мозгу и сознанию. В следующей статье я расскажу о некоторых теоретических моделях "квантового мозга" и "квантового сознания".