Разбираем влажность воздуха, как настоящие метеорологи — с таблицами, формулами и физическим смыслом!
Друзья, сегодня у нас — задача, которая выглядит почти как загадка: сколько воды содержится в 1 м³ воздуха, если температура 28°C, а относительная влажность — 60%? Казалось бы — воздух «сухой», вода не видна… но на самом деле — в каждом кубометре «растворены» граммы, а то и десятки граммов воды в виде пара. И именно это определяет, насколько душно в комнате, как быстро сохнет бельё, и почему в бане так парит.
Это не просто расчёт — это погружение в физику атмосферы, в понятие относительной и абсолютной влажности, в использование таблиц давления насыщенного пара. Мы разберём всё максимально подробно: от определений → к нахождению плотности насыщенного пара → к расчёту реальной плотности → и, наконец, к массе и объёму воды. Потому что влажность — это не «проценты на градуснике», это реальная физическая величина, которую можно взвесить.
Готовы стать метеорологами на один пост? Тогда — берём психрометрические таблицы, включаем калькулятор и считаем, сколько воды «спрятано» в воздухе!
🔹 ДАНО:
— Объём воздуха: V = 1 м³
— Температура воздуха: t = 28°C
— Относительная влажность: φ = 60% = 0.6
Найти:
Объём жидкой воды, которая содержится в этом воздухе в виде пара → V_воды = ?
❗️Важно: речь идёт не об объёме пара (он уже занимает 1 м³), а об объёме той воды, которая превратилась в пар — то есть если весь пар сконденсировать, какой объём воды получится.
🔹 ШАГ 1: Что такое относительная влажность?
Относительная влажность — это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного водяного пара при той же температуре:
φ = ρ / ρ₀
Где:
— φ — относительная влажность
— ρ — фактическая плотность пара в воздухе (кг/м³)
— ρ₀ — плотность насыщенного пара при данной температуре (кг/м³)
Нам нужно найти ρ, а для этого — сначала найти ρ₀ при 28°C.
🔹 ШАГ 2: Находим плотность насыщенного пара при 28°C
Это значение нельзя вывести формулой — его берут из таблиц или графиков, основанных на экспериментальных данных.
Из стандартных таблиц (или по справочным данным):
При t = 28°C плотность насыщенного водяного пара ρ₀ ≈ 25.8 г/м³ = 0.0258 кг/м³
💡 Примечание: можно также использовать давление насыщенного пара и уравнение Менделеева-Клапейрона, но для школьного/практического уровня — таблицы предпочтительнее.
🔹 ШАГ 3: Находим фактическую плотность пара в воздухе
Из формулы относительной влажности:
ρ = φ · ρ₀ = 0.6 · 0.0258 = 0.01548 кг/м³
✅ Это значит: в 1 м³ воздуха содержится 0.01548 кг = 15.48 граммов водяного пара.
—
💡 Для сравнения: при 100% влажности и 28°C — в кубометре было бы почти 26 г воды. При 60% — около 15.5 г — вполне комфортно для человека.
🔹 ШАГ 4: Находим массу воды в 1 м³ воздуха
Поскольку объём воздуха — 1 м³, то:
m = ρ · V = 0.01548 кг/м³ · 1 м³ = 0.01548 кг = 15.48 г
✅ Масса воды — 15.48 граммов
🔹 ШАГ 5: Переводим массу воды в объём (жидкой воды!)
Плотность жидкой воды: ρ_воды = 1000 кг/м³ = 1 г/см³
Объём: V_воды = m / ρ_воды
V_воды = 15.48 г / 1 г/см³ = 15.48 см³
Или в литрах:
15.48 см³ = 0.01548 л ≈ 15.5 мл
✅ Ответ: в 1 м³ воздуха при 28°C и 60% влажности “растворено” примерно 15.5 миллилитров воды
—
💡 Это чуть больше столовой ложки (≈15 мл). Представьте: весь этот пар — из одной ложки воды, равномерно распределённой по целому кубометру воздуха!
🔹 ШАГ 6: Проверка и логика
— При 30°C ρ₀ ≈ 30.3 г/м³ → при 60% → 18.2 г/м³ — близко к нашему значению.
— При 25°C ρ₀ ≈ 23 г/м³ → 60% → 13.8 г/м³ — тоже логично, у нас 28°C → между 25 и 30 → 15.5 г — правдоподобно.
— Размерность: кг/м³ → кг → м³ (воды) — всё сходится.
🔹 ШАГ 7: Почему не используется давление? Альтернативный способ
Можно решить через давление насыщенного пара.
При 28°C давление насыщенного пара P₀ ≈ 3780 Па (из таблиц).
Фактическое парциальное давление пара:
P = φ · P₀ = 0.6 · 3780 = 2268 Па
Теперь используем уравнение состояния идеального газа:
P·V = (m / M) · R·T
Где:
— M = 0.018 кг/моль — молярная масса воды
— R = 8.31 Дж/(моль·К)
— T = 28 + 273 = 301 К
— V = 1 м³
Выразим m:
m = (P·V·M) / (R·T) = (2268 · 1 · 0.018) / (8.31 · 301)
Считаем числитель: 2268 · 0.018 = 40.824
Знаменатель: 8.31 · 301 ≈ 2501.31
m ≈ 40.824 / 2501.31 ≈ 0.01632 кг = 16.32 г
❗️Небольшое расхождение (16.32 г против 15.48 г) — связано с округлениями в таблицах давления и плотности. Оба метода корректны, но табличный метод с плотностью — точнее и проще для таких задач.
🔹 ПОЧЕМУ ЭТО ВАЖНО?
Понимание влажности воздуха — это основа:
— метеорологии и климатологии (прогнозы, выпадение осадков),
— строительства (расчёт точки росы, конденсата в стенах),
— медицины (микроклимат в помещениях, ингаляции),
— сельского хозяйства (полив, хранение зерна),
— промышленности (сушка материалов, кондиционирование).
Более того — это тренировка работы со справочными данными и перехода между состояниями вещества. Вы учитесь видеть, что даже «сухой» воздух — на самом деле влажный, и это можно измерить, рассчитать, использовать.
Представьте, что вы — молекула воды, «растворённая» в кубометре воздуха. Вы парите где-то под потолком и думаете: «Меня всего 15.5 граммов на целый кубометр — я почти невидима!». Но потом вспоминаете: «Зато нас миллиарды, и вместе мы создаём влажность, туман, дождь — и даже пар в бане!». А когда кто-то включает осушитель — вы с грустью конденсируетесь на холодной поверхности и превращаетесь обратно в жидкость: «Ну что ж, была в воздухе — стала в стакане. Физика решила — я подчиняюсь!». ☁️💧