Найти в Дзене
УЧЕБА

Понятие одночлена и его стандартный вид

В математике существует множество различных математических выражений, и кекоторые из них имеют свое закрепившиеся названия. С одним из таких понятий нам и предстоит познакомиться – это одночлен. Одночлен - это математическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Для того, чтобы лучше разобраться с новым понятием, необходимо ознакомиться с несколькими примерами. Примеры одночленов Выражения 4, нами. Как видите, одно только число или переменная (в степени или без) тоже является одночленом. А вот, например, выражения уже не являются одночленам, так как они не подходят под определения. В первом выражении используется «сумма», а это недопустимо, во втором – «деление», в третьем – разность. Рассмотрим еще несколько примеров. Например, выражение тоже является одночленом, хотя там и присутствует деление. Но в данном случае деление происходит на число, и поэтому соответствующее выражение можно переписать

В математике существует множество различных математических выражений, и кекоторые из них имеют свое закрепившиеся названия. С одним из таких понятий нам и предстоит познакомиться – это одночлен.

Одночлен - это математическое выражение, которое состоит из произведения чисел, переменных, каждая из которых может входить в произведение в некоторой степени. Для того, чтобы лучше разобраться с новым понятием, необходимо ознакомиться с несколькими примерами.

Примеры одночленов

Выражения 4,

нами. Как видите, одно только число или переменная (в степени или без) тоже является одночленом. А вот, например, выражения

-2

уже не являются одночленам, так как они не подходят под определения. В первом выражении используется «сумма», а это недопустимо, во втором – «деление», в третьем – разность.

Рассмотрим еще несколько примеров.

Например, выражение

-3

тоже является одночленом, хотя там и присутствует деление. Но в данном случае деление происходит на число, и поэтому соответствующее выражение можно переписать следующим образом:

-4

Стандартный вид одночлена

Посмотрите на следующие два выражения-одночлена:

-5

На самом деле это два одинаковых одночлена. Не правда ли, что первое выражение выглядит более удобным, чем второе?

Причиной этого является то, что первое выражение записано в стандартном виде. Стандартный вид многочлена - это произведение, составленное из числового множителя и степеней различных переменных. Числовой множитель называется коэффициентом одночлена.

Для того, чтобы привести одночлен к его стандартному виду, достаточно перемножить все числовые множители, присутствующие в одночлене, и поставить получившееся число на первое место. Затем перемножить все степени, у которых одинаковые буквенные основания.

Приведение одночлена к его стандартному виду

Если в нашем примере во втором выражении перемножить все числовые множители 3*1/4 и потом умножить a*a, то получится первый одночлен. Это действие называется приведение одночлена к его стандартному виду.

Если два одночлена различаются только числовым коэффициентом или равны между собой, то такие одночлены называются в математике подобными.