Создание нового продукта требует тщательной проверки свойств его конструктивных элементов. Сократить и удешевить этот долгий и трудоемкий процесс поможет компьютерное моделирование. Сегодня в блоге мы расскажем, как белорусские ученые разработали компьютерную модель разрушения неоднородного материала – в нашем случае бетона, который широко применяется при строительстве транспортно-инфраструктурных комплексов uST.
Выбор метода расчета
Моделирование динамического разрушения бетонных строительных конструкций относится к нелинейным задачам со сложными контактными взаимодействиями. Для их решения с использованием пакета конечно-элементного анализа ANSYS/LS-DYNA могут применяться следующие методы:
• Эйлера;
• сеточный Лагранжа;
• дискретных элементов (DEM);
• Галеркина (EFG);
• сглаженных частиц Галеркина (SPG);
• произвольная постановка Лагранжа – Эйлера (ALE);
• бессеточный метод сглаженных частиц (SPH).
Для проведения вычислительных экспериментов использовался комбинированный способ явного моделирования, включающий в себя два из перечисленных методов: сеточный Лагранжа и бессеточный метод сглаженных частиц. Метод Лагранжа является наиболее точным и эффективным. Метод сглаженных частиц более требователен к машинным ресурсам, имеет меньшую стабильность по сходимости при растяжении материала, но в то же время позволяет выполнять расчет с большими деформациями при сохранении преимуществ Лагранжевого подхода.
Зачем ученым снайперская винтовка Драгунова?
Перед разработчиками комплекса стояла задача создать бетонную строительную конструкцию, способную противостоять огню из стрелкового переносного оружия, в том числе бронебойным боеприпасом. Исходя из этого, для испытаний была выбрана снайперская винтовка Драгунова (СВД).
Огонь велся бронебойными патронами Б-32 со стальным термоупрочненным сердечником (дульная энергия около 4000 Дж). Выбор бронебойных боеприпасов был обусловлен их высокой пробивной способностью, а значит, и большей угрозой для строительных конструкций.
Ход эксперимента
Для описания нелинейного поведения бетона в условиях больших скоростей деформации и давления была выбрана модель Karagozian&Case, так как она учитывает скорость деформации при динамическом нагружении и включает в себя механизм разрушения.
Для описания поведения пули и ее частей после столкновения с преградой использовалась модифицированная модель Джонсона – Кука.
Бетонные блоки для эксперимента с прочностью на сжатие 40 МПа были изготовлены из портландцемента ЦЕМ I 42,5Н, карьерного песка, воды и гранитного щебня с фракцией 15–20 мм. Чтобы бетонные блоки приобрели требуемую прочность, их выдерживали 28 дней.
Для уменьшения влияния краевых эффектов стрельба велась по области в форме равностороннего треугольника со сторонами 125 мм, а отступ от края образца составлял не менее 100 мм.
При каждом выстреле фиксировались состояние и характер разрушения образца, глубина проникновения пули в образец и размеры отколотых частей на его лицевой стороне.
Результаты
Научная цель эксперимента состояла в том, чтобы разработать и внедрить методику компьютерного моделирования пулестойкой защиты строительных конструкций uST.
Практическая цель – разработать и использовать строительные конструкции uST, способные противостоять выстрелу из ручного переносного стрелкового оружия крупного калибра, и убедиться в их надежности экспериментальным путем.
Бетонный блок должен был выдержать выстрел из стрелкового оружия без сквозного пробития, сохранив свою целостность и основные конструктивные характеристики для дальнейшей эксплуатации, что и произошло.
Полученные в результате натурного эксперимента данные о разрушении бетонного блока были использованы для верификации разработанной расчетной модели.