Многие из нас не знают даже что такое софизм, хотя встречали его в своей жизни хоть раз. Аристотель называл софизмом «мнимые доказательства», в которых обоснованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического или семантического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой — семиотической. За счёт метафоричности речи, омонимии или полисемии слов, амфиболий и прочих, нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах (последнюю ошибку можно считать и семиотической, так как она связана с соглашением о «правильно построенных формулах») происходит нарушение правил логики. Вот один из древних софизмов («рогатый»), приписываемый Эвбулиду: «Что ты не терял, то имеешь. Рога ты не терял. Значит, у тебя рога». Здесь маскируется двусмысленность большей посылки. Если она мыслится универсальной: «Всё, что ты не терял…», то вывод логически безупречен, но неинтересен, поскольку очевидно, что большая посылка ложна; если же она мыслится частной, то заключение не следует логически. Последнее, однако, стало известно лишь после того, как Аристотель создал логику. А вот современный софизм, обосновывающий, что с возрастом «годы жизни» не только кажутся, но и на самом деле короче: «Каждый год вашей жизни — это её 1/n часть, где n — число прожитых вами лет. Но n + 1>n. Следовательно, 1/(n + 1)< 1/n». Исторически с понятием «Софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста — представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. (Известно, что сам Протагор оказался жертвой «софизма Эватла».) С этой же идеей обычно связывают и «критерий основания», сформулированный Протагором: мнение человека есть мера истины. Уже Платон заметил то, что основание не должно заключаться в субъективной воле человека, иначе придётся признать законность противоречий (что, между прочим, и утверждали софисты), а поэтому любые суждения считать обоснованными. Эта мысль Платона была развита в аристотелевском «принципе непротиворечия», уже в современной логике, — в истолкованиях и требовании доказательств «абсолютной» непротиворечивости. Перенесённая из области чистой логики в область «фактических истин», она породила особый «стиль мышления», игнорирующий диалектику «интервальных ситуаций», то есть таких ситуаций, в которых критерий Протагора, понятый, однако, более широко, как относительность истины к условиям и средствам её познания, оказывается весьма существенным. Именно поэтому многие рассуждения, приводящие к парадоксам и в остальном безупречные, квалифицируются как софизмы, хотя по существу они только демонстрируют интервальный характер связанных с ними гносеологических ситуаций. Так, софизм «куча» «Одно зерно — не куча. Если n зёрен не куча, то n + 1 зерно — тоже не куча. Следовательно, любое число зёрен — не куча») — это лишь один из «парадоксов транзитивности», возникающих в ситуации «неразличимости». Последняя служит типичным примером интервальной ситуации, в которой свойство транзитивности равенства при переходе от одного «интервала неразличимости» к другому, вообще говоря, не сохраняется, и поэтому принцип математической индукции в таких ситуациях неприменим. Стремление усматривать в этом свойственное опыту «нетерпимое противоречие», которое математическая мысль «преодолевает» в абстрактном понятии числового континуума (А. Пуанкаре), не обосновывается, однако, общим доказательством устранимости подобного рода ситуаций в сфере математического мышления и опыта. Достаточно сказать, что 5 описание и практика применения столь важных в этой сфере «законов тождества» (равенства) так же, вообще говоря, как и в эмпирических науках, зависит от того, какой смысл вкладывают в выражение «один и тот же объект», какими средствами или критериями отождествления при этом пользуются. Другими словами, идёт ли речь о математических объектах или, к примеру, об объектах квантовой механики, ответы на вопрос о тождестве неустранимым образом связаны с интервальными ситуациями. При этом далеко не всегда тому или иному решению этого вопроса «внутри» интервала неразличимости можно противопоставить решение «над этим интервалом», то есть заменить абстракцию неразличимости абстракцией отождествления. А только в этом последнем случае и можно говорить о «преодолении» противоречия. По-видимому, первыми, кто понял важность семиотического анализа софизмов, были сами софисты. Учение о речи, о правильном употреблении имён Продик считал важнейшим. Анализ и примеры софизмов часто встречаются в диалогах Платона. Аристотель написал специальную книгу «О софистических опровержениях», а математик Евклид — «Псевдарий» — своеобразный каталог софизмов в геометрических доказательствах.
В математических софизмах чаще всего используются «запрещенные действия» либо не учитываются условия применимости теорем, формул или правил. Часто понимание людьми ошибок в софизме ведет к пониманию математики в целом, развивает логику и навыки правильного мышления. Поиск ошибки в софизме ведет к ее пониманию и осознанию, а осознавая ошибку, человек имеет больше шансов ее не допустить. Также, в истории развития математики софизмы способствовали повышению точности формулировок и более глубокому пониманию понятий математики. Существуют и другие виды софизмов (например: словесные), но в своей работе я рассматриваю только математические. Существует несколько видов математических софизмов: геометрические, логические и алгебраические.
Геометрические софизмы. Геометрические софизмы построены на ошибках, связанных с геометрическими фигурами и действиями над ними. Изучим их на примере: 1) Спичка вдвое длиннее телеграфного столба. Пусть а дм - длина спички и b дм - длина столба. Разность между b и a обозначим через c . Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b2 - ab = ca + c2. Вычтем из обеих частей bc. Получим: b2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c), откуда b = - c, но c = b - a, поэтому b = a - b, или a = 2b. Ошибка: Ошибка заключается в том, что в выражении b(b-a-c )= -c(b-a-c) производится деление на 0
2)Хорда, не проходящая через центр окружности, равна диаметру. Пусть в окружности приведен диаметр АВ. Через точку В проведем любую хорду ВЕ, не проходящую через центр, затем через середину этой хорды D и точку А проведем новую хорду АС. Наконец, точки Е и С соединим отрезком прямой. Рассмотрим ∆ АВD и ∆ЕDС. В этих треугольниках: ВD = DЕ (по построению), А= Е (как вписанные, опирающиеся на одну и ту же дугу). Кроме того, ВDА= ЕDC (как вертикальные). Если же сторона и два угла одного треугольника соответственно равны стороне и двум углам другого треугольника, то такие треугольники равны. Значит, ∆ ВDА= ∆ЕDC , а в равных треугольниках против равных углов лежат равные стороны. Поэтому, АВ=ЕС. По теореме о признаке равенства треугольника: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. А в нашем случае, А не прилежит к стороне В D . 7 Ошибка: Ошибка заключается в неправильном применении теоремы о равенстве треугольников (равны 2 угла, не прилежащие к одной стороне).
Ошибка заключается в неправильном применении теоремы о равенстве треугольников (равны 2 угла, не прилежащие к одной стороне).
3) «Загадочный треугольник» Дан прямоугольный треугольник 13*5 клеток, составленный из четырёх фигур.
После перестановки фигур при визуальном сохранении изначальных пропорций появляется дополнительная, не занятая ни одной частью, клетка (рис. 2). Но мы же понимаем, что такого быть не может.
Площади закрашенных фигур, конечно, равны между собой(оба по 32 клетки), однако, то, что визуально наблюдается как треугольники 13*5, на самом деле таковым не является, и имеет разные площади. То есть ошибка, замаскированная в условии задачи, состоит в том, что начальная фигура названа треугольником (на самом деле являющаяся вогнутым четырёхугольником). Это отчётливо заметно на рис. 2 – гипотенузы верхней и нижней фигур проходят через разные точки: (8,3) вверху и (5,2) внизу. Секрет в свойствах синего и красного треугольников. Это легко проверить вычислениями. 8 Отношения длин соответствующих сторон синего и красного треугольников не равны друг другу(2\3 и 5\8), поэтому эти треугольники не являются подобными, а значит, имеют разные углы при соответствующих вершинах. Если нижние стороны этих треугольников параллельны, то гипотенузы в обоих треугольниках 13*5 на самом деле являются ломаными линиями (на верхнем рисунке создаётся излом внутрь, а на нижнем – наружу).Если наложить верхнюю и нижнюю фигуры 13*5 друг на друга, то между их гипотенузами образуется параллелограмм, в котором и содержится «лишняя» площадь. На рис. 3 этот параллелограмм приведён в верных пропорциях. Официальным автором этой задачи про «загадочные треугольники» является иллюзионист-любитель Пол Керри, придумавшим этот софизм в XX веке.
Алгебраические софизмы.
Алгебра — один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Алгебра возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений. Т.е. алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях.
1)«Два неодинаковых натуральных числа равны между собой»
решим систему двух уравнений:
х+2у=6, (1)
у=4- х/2 (2)
Сделаем это подстановкой у из 2го уравнения в 1, получаем х+8-х=6, откуда 8=6 Ошибка: Уравнение (2) можно записать как х+2у=8, так что исходная система за-пишется в виде: Х+2у=6, 9 Х+2у=8 В этой системе уравнений коэффициенты при переменных одинаковы, а правые части не равны между собой, из этого следует, что система несовместна, т.е. не имеет ни одного решения. Графически это означает, что прямые у=3-х/2 и у=4-х/2 параллельны и не совпадают. Перед тем, Как решать систему линейных уравнений, полезно проанализировать, имеет ли система единственное решение, бесконечно много решений или не имеет решений вообще.
2) «Отрицательное число больше положительного». Возьмем два положительных числа а и с. Сравним два отношения: а/-c и -а/c Они равны, так как каждое из них равно –(а/с). Можно составить пропорцию: a/-c=-a/c Но если в пропорции предыдущий член первого отношения больше последующего, то предыдущий член второго отношения также больше своего последующего. В нашем случае а>-с, следовательно, должно быть –а>с, т.е. отрицательное число больше положительного. Ошибка: Данное свойство пропорции может оказаться неверным, если некоторые члены пропорции отрицательны.
3) Дважды два - пять! Сейчас мы вместе с вами докажем, что дважды два равно пяти. Это можно сделать буквально на пальцах: Имеем равенство: 16 - 36 = 25 - 45 Прибавим к левой и правой части 81/4: 16 - 36 + 81/4 = 25 - 45 + 81/4 Преобразуем выражение: 4*4 - 2*4*9/2 + (9/2)*(9/2) = 5*5 - 2*5*9/2 + (9/2)*(9/2) Теперь можно заметить, что в левой и правой части выражения (3) записаны произведения вида: a 2 -2ab+b2 , то есть, квадрат разности: (a-b)2 . В нашем случае слева a=4, b=9/2, а справа a=5, b=9/2. Поэтому перепишем выражение (3) в виде квадратов разности: (4 - 9/2)2 = (5 - 9/2)2 А следовательно, 4 - 9/2 = 5 - 9/2 10 И наконец, получаем долгожданное равенство: 4 = 5 или, если угодно: 2*2 = 5 Ошибка: В преобразования, разумеется, закралась ошибка. А именно, при переходе из (4) в (5) совсем забыли, что равенство квадратов вовсе не означает равенство значений, возведенных в квадрат: они могут быть противоположны друг другу, как в нашем случае: 4-9/2 равно -1/2, а 5-9/2 равно 1/2. А квадраты этих значений одинаковы.
Вот несколько примеров софизмов в математике, их огромное количество, потому решил рассказать о самых интересных. Хорошего дня!