Найти тему
Катехизис и Катарсис

Загадочная математика

Многие дети (да и взрослые тоже) считают арифметику скучной. Ну что интересного в том, чтобы складывать и вычитать числа? Но знаете ли вы, сколько в арифметике загадочных и совершенно необъяснимых вещей?

Для начала возьмём так называемую «задачу Эйлера», она же «задача о тридцати шести офицерах», которую, согласно легенде, предложила знаменитому математику Леонарду Эйлеру императрица Екатерина Великая.

Родился Эйлер в Швейцарии, но бóльшую часть жизни прожил у нас в России и даже публиковал многие свои работы на русском языке – в том числе и эту удивительную задачу.

Чтобы не утомлять вас старинными воинскими званиями, переведём её на простой современный школьный язык.


Итак, пусть у нас есть 36 ребят, поровну учеников первого, второго, третьего, четвёртого, пятого и шестого класса. (По шесть человек получается, верно?) Все они посещают разные кружки и секции. Пускай шестеро из них (кто из какого класса – мы не знаем!) занимаются музыкой, шестеро – танцами, шестеро – рисованием, шестеро – футболом, шестеро – плаванием и шестеро – компьютерами.

Итак, задача: нужно расставить наших ребят в квадрат шесть на шесть так, чтобы в любом ряду – как по горизонтали, так и по вертикали! – были представлены, не повторяясь, ученики всех классов (один первоклассник, один второклассник и так далее до шестиклассника) и всех увлечений (то есть один музыкант, один танцор, один художник, один футболист, один пловец и один юный программист).

Ещё раз подчёркиваем: повторы комбинаций недопустимы, то есть у нас не может быть, скажем двух первоклассников-музыкантов или второклассников-художников.

Попробуйте придумать такую расстановку.

Однако скажем сразу: академик Эйлер бился с этой задачей несколько месяцев – но так и не смог отыскать её решения! Расставить детей в указанном порядке не получится, хоть ты лопни.

Может, эта задача вообще не решается? Вовсе нет. Если мы возьмём эту же задачу для 16 детей (то есть с первого класса по четвёртый, и чтобы увлечений было всего четыре, «от музыканта до футболиста»), то она решается очень просто (смотрите на таблицу в иллюстрациях к посту).

Академик Эйлер сумел решить эту задачу и для 25 ребят (с первого по пятый класс и от музыканта до пловца). В дальнейшем этой задачей занимались тысячи (!) математиков, и в 1959 году было доказано, что эта задача решается для любых квадратных чисел с корнем больше трёх. Любых, кроме тридцати шести!



Как такое может быть? Наша интуиция, наш здравый смысл подсказывает – если задача решается в случае 3 х 3, 4 х 4, 5 х 5, 10 х 10, да хоть 22 х 22 – то она ну просто всенепременно должна решаться для всех чисел n x n! Но нет – для квадрата «шесть на шесть» задача Эйлера неразрешима... Впрочем, как и для квадрата «два на два» (попробуйте сами).

Что же особенного в числах 2 и 6? Почему именно 2 и 6? Почему эта задача не решается именно для этих двух чисел и никаких других? А никто не знает...

А вот другая удивительная задача, сформулированная в 1949 году индийским математиком Даттарая Капрекаром. Возьмите любое четырёхзначное число, в котором не все цифры одинаковые. То есть 1111, 2222 или 9999 – нельзя. А любые другие – можно. Скажем, текущий год – пусть у нас будет число 2023. Теперь внимание! Переставим цифры этого числа так, чтобы получить самое меньшее возможное число. Нетрудно догадаться, что это будет число 0223, так? А теперь переставим цифры так, чтобы получить самое большое число. Понятно, что это будет 3220, ага? Вычтем меньшее число из большего:

1) 3220 – 0223 = 2997

Сделаем с числом 2997, которое у нас получилось, то же самое: переставим цифры, найдём наименьшее возможное число (2799) и наибольшее (9972). Снова вычтем:

2) 9972 – 2799 = 7173

Продолжаем, повторяем всё то же самое:

3) 7731 – 1377 = 6354

4) 6543 – 3456 = 3087

5) 8730 – 0378 = 8352

6) 8532 – 2358 = 6174

А дальше (глубоко выдохнули) начинается то самое, удивительное!

7) 7641 – 1467 = 6174

8) 7641 – 1467 = 6174...

Всё, наши расчёты навсегда бесконечно «зациклились» на одном-единственном числе 6174!

-2

Можно подумать, что это просто совпадение, случай. Однако нет, не случай. Возьмите совершенно любое четырёхзначное число с не повторяющимися цифрами – хоть 1234, хоть 9876, проделайте те же самые действия – и в итоге всё равно получите всё то же самое «упрямое» число 6174, как говорят математики – «неподвижную точку преобразования».

-3

И снова, как с задачей Эйлера, вопрос: почему?! Как?! Почему все четырёхзначные числа в преобразовании Капрекара «сходятся» к числу 6174? Что в нём такого особенного?

Кстати, можете проверить сами: все трёхзначные числа с неповторяющимися цифрами точно также «сходятся», «сбегаются» к волшебному числу 495. А вот с двухзначными или пятизначными числами у вас этот фокус, как ни бейтесь, не получится. В этом случае «неподвижной точки преобразования» нет!

Дальнейшие проверки на компьютере показали, что для шестизначных чисел таких вот «точек Капрекара» существует две: это числа 549945 и 631764 (если вы узник замка Иф, возьмите карандаш и проверьте сами). А для семизначных чисел «точек Капрекара», «волшебных чисел Капрекара» снова не существует...

-4



Ну как, вы всё ещё считаете, что в математике нет ничего загадочного, да?

P.S. Кстати, задача Эйлера для числа 36 имеет решение с точки зрения квантовой механики – если ученики или их свойства будут находиться в «суперпозиции», то есть, например, если кто-то из учеников окажется одновременно учащимся и первого, и второго класса. Но такое возможно только в микромире а в макромире нет! А ведь ученики, классы, кружки – это явления макромира, правда?

Или не только? Как думаете?...

Журнал «Лучик»

CatScience