Найти тему
Росатом Дзен

«Страна Росатом»: Великая топливная эволюция. Как создают горючее для транспортных реакторов

В марте научно-исследовательское твэльно-топливное отделение Высокотехнологического научно-исследовательского института неорганических материалов им. Бочвара (ВНИИНМ) отметило юбилей — ​70 лет со дня образования лаборатории Л‑18, из которой оно и выросло. Ученые разработали четыре поколения топлива для атомных подлодок, многократно повысив их ресурс. Сегодня здесь создают твэлы для атомных ледоколов, малых АЭС и плавучих энергоблоков. Мы проследили этапы топливной эволюции.

Поколение 0: нержавейка, стержень, таблетки


Как известно, идеологом создания первой советской атомной подводной лодки (АПЛ) был академик Анатолий Александров. Задачу разработать топливо для АПЛ он поручил коллегам по Институту атомной энергии (ИАЭ, сейчас НИЦ «Курчатовский институт»). Ученые пошли по простому пути — ​попытались приспособить топливо для энергетических реакторов под транспортные. Для оболочки тепловыделяющих элементов предложили использовать нержавеющую сталь, в качестве топливной композиции выбрали диоксид урана в виде спеченных таблеток. Тестировали и другой вариант — ​виброуплотненную крупку диоксида урана, пропитанную свинцово-висмутовым сплавом, который при рабочей температуре находился в жидком состоянии. Конструкция твэла — ​стержень диаметром около 6 мм.

Но разработчики не учли условия работы транспортного реактора. Температура в активной зоне ниже, чем в энергетическом реакторе, постоянные перепады температуры, ведь подлодке требуется маневренность: как двигатель автомобиля, реактор должен быстро сбрасывать и набирать мощность. При этом в море заниматься перегрузкой топлива некогда — ​активная зона должна работать несколько месяцев, а лучше лет. «Чтобы выгрузить всю зону и поставить новую, АПЛ нужно доставить на завод, вскрыть прочный корпус. Это слишком большие стратегические и экономические потери», — ​объясняет главный эксперт ВНИИНМ Александр Ватулин.

Активные зоны с топливом разработки ИАЭ на испытаниях показали очень низкий ресурс. Потом — ​разгерметизация зоны с выходом продуктов деления в теплоноситель. ВНИИНМ поручили разобраться, в чем проблема, и предложить приемлемый вариант топлива. Специально под эту задачу и была создана лаборатория Л‑18.

Поколение 1: вместо таблеток — ​интерметаллид


Ученые выяснили, что в разгерметизации виновато распухание топлива: под облучением топливный сердечник (активный объем твэла, набираемый из топливных таблеток) изменяет объем, потому что объем осколков деления больше исходного объема урана‑235. Оболочка из нержавеющей стали под воздействием потока быстрых нейтронов становится хрупкой. Даже небольшая деформация сердечников вызывала критический рост напряжения в оболочках, и они быстро разрушались. При разгерметизации твэлов с таблетками радиоактивность теплоносителя резко возрастала, при разгерметизации твэлов со свинцово-висмутовым сплавом возникала опасность вытекания сплава и пережога твэлов.

Твэлы, предложенные ИАЭ, были контейнерного типа, то есть без металлургической связи сердечника и оболочки. В них топливо нагревается до высокой температуры, и из-за наличия свободного объема под оболочкой идет термомеханическое взаимодействие сердечника с оболочкой при циклических изменениях температуры. Специалисты ВНИИНМ предложили другой тип тепловыделяющего элемента — ​дисперсионный. «Надо было обеспечить хорошее соединение сердечника с оболочкой, чтобы при изменениях мощности не возникали термические взаимодействия, которые, как в случае с таблеточным топливом, могут привести к быстрому разрушению, — ​говорит Александр Ватулин. — ​В дисперсионных твэлах частицы топлива распределяются в матрице с хорошей теплопроводностью, которая обеспечивает низкую рабочую температуру».

В качестве матрицы выбрали сплав, обладающий хорошими литейными свойствами. Совместно с Машиностроительным заводом (МСЗ) разработали технологию изготовления дисперсионных твэлов, которая используется до сих пор. «В оболочку засыпают частицы ядерного топлива. Все пространство между ними под давлением заполняют жидким матричным материалом», — ​поясняет Александр Ватулин.

Первые атомные подлодки работали на стержневых дисперсионных твэлах с оболочками из нержавеющей стали и интерметаллидным топливом. Ресурс активных зон с таким топливом был почти в два раза больше, чем у спроектированных в ИАЭ.

Полный материал читайте в отраслевой газете «Страна Росатом».