В течение многих лет врачи полагались на визуальный осмотр для выявления подозрительных пигментных поражений (SPL), которые могут указывать на рак кожи. Выявление SPL на ранней стадии помогает оперативно выявить меланомы и значительно снизить стоимость лечения. Но быстро найти SPL и определить их важность не так-то просто из-за большого объема пигментных поражений. Исследователи из MIT разработали новый ИИ-конвейер на глубоких сверточных нейросетях (DCNN, deep convolutional neural networks) и реализовали его для анализа SPL через камеру обычного смартфона. Система автоматически обнаруживает, извлекает и анализирует все пигментные поражения кожи, наблюдаемые на широкоугольном фотоснимке. Предварительно обученные ML-модели DCNN определяют подозрительность отдельных пигментных образований и маркируют их: нужен дальнейший осмотр - желтым, требуется направление к дерматологу - красным. Извлеченные признаки используются для последующей оценки пигментных поражений и отображения результатов в виде тепловой карты. Напомним, DCNN – это алгоритмы глубокого обучения, которые используются для классификации изображений с последующей их кластеризацией, например, при поиске по фотографиям.
https://news.mit.edu/2021/artificial-intelligence-tool-can-help-detect-melanoma-0402