Найти в Дзене
Tuapsinets

Самодельный контроллер заряда аккумулятора

Здравствуйте друзья. Сегодня хочу рассказать про самодельный контроллер заряда аккумуляторной батареи, а точнее как можно обойтись без специализированного контроллера заряда, максимально сэкономив на этом. Я обещал рассказать как, и вот выполняю своё обещание.
Немного теории:
Самая стандартная схема солнечной электростанции состоит из солнечной панели, контроллера заряда и аккумулятора:

-2

Вот про контроллер заряда я и хочу сегодня поговорить, а именно про то, какие функции он выполняет и как можно его сделать самостоятельно.
Основные функции контроллера заряда это контроль напряжения на аккумуляторной батарее с целью недопустить как перезаряда, так и переразряда аккумуляторной батареи.
При перезаряде аккумулятора происходит кипение электролита с выплескиванием его наружу. Электролит состоит из серной кислоты, которая может повредить как сам аккумулятор, так и находящиеся поблизости предметы.
Глубокий разряд не менее опасен, следствия следующие:
— Осыпание материала с активных пластин внутри АКБ. Это неизбежно сокращает ёмкость аккумулятора. А значит, он меньше по времени держит заряд и пусковые токи уменьшаются. Это происходит и при повседневной эксплуатации, но гораздо медленнее.
— Короткое замыкание между пластинами. Причина этого — прогрессирующее осыпание шлама и элементов пластин АКБ. Эти материалы являются хорошими проводниками и собравшись на дне АКБ, они просто замыкают между собой активные пластины. Такая АКБ повреждена необратимо.
— Сульфатация. Этот эффект возникает при полной и глубокой разрядке АКБ. Чем сильнее разряжен аккумулятор и чем дольше он стоит недозаряженым, тем быстрее активные пластины АКБ покрываются материалами, которые препятствуют дальнейшему химическому процессу. Проще говоря — вы никогда не сможете эту батарею зарядить.

От теории к практике:
Из сказанного выше следует, что контроллер заряда достаточно важная вещь солнечной электростанции, однако его можно сделать самостоятельно из 2 недорогих модулей XH-M601. Первый модуль будет контролировать процесс зарядки, а второй процесс разрядки аккумулятора. Однако необходимо отметить, что эти модули бывают 2 видов.

-3

Распространенный вид с 2 клеммниками от реле (слева), который нам не подходит. И с 3 (справа), который как раз и нужен.
Отличаются они тем, что 2-х контактный модуль имеет только нормальноразомкнутые контакты реле, а трехконтактный и нормальнозамкнутые и нормальноразомкнутые. Самое неприятное состоит в в том, что модуль с 2-х контактным клеммникорм невозможно использовать даже с помощью «колхозинга», т.к. нормальнозамкнутый контакт реле откушен перед запайкой реле в плату и с помощью дополнительных перемычек невозможно использовать такой модуль, т.к. на печатной плате нет даже отверстия для этого контакта реле (место отмечено красной окружностью).

-4

Принцип работы модуля XH-M601
Модуль собран с использованием знаменитой «таймерной» микросхемы 555:

-5

Срабатывание происходит при достижении пороговых значений напряжения на клеммах аккумулятора. Пороговые напряжения устанавливаются подстроечными резисторами. Напряжение нижнего порога устанавливается резистором R2 (на плате это RP1), а верхнего – R4 (на плате это RP2). Вращение по часовой стрелке увеличивает напряжение, против часовой – уменьшает. Момент включения/выключения модуля можно определить по индикаторному светодиоду и характерному щелчку реле.
Для настройки модуля понадобится регулируемый источник питания. Желательно использовать маломощный источник питания или с ограничением выходного тока, которое нужно установить в пределах 50-100 миллиампер. Это обусловлено тем, что в крайнем положении подстроечных резисторов, на входы таймера NE555 будет подано полное напряжение источника питания, что приведет к протеканию большого тока через микросхему и сожжет её.
Резистор R2 (RP1 на плате) отвечает за низкий уровень (включение), он приоритетный. Если с помощью резистора RP1 неправильно установлен порог срабатывания, то реле будет всегда включено, независимо от положения R4 (RP2 на плате). Поэтому, при настройке модуля следует придерживаться следующей последовательности:
1. Выкручиваем против часовой стрелки потенциометры R2 и R4 (RP1 и RP2 на плате), но не до упора, иначе подадим на вход NE555 напряжение питания и сожжём микросхему при использовании мощного блока питания и при отсутствии ограничения по току. После того, как будет достигнуто крайнее положение (слышен характерный щелчок при вращении), нужно сделать несколько оборотов в обратную сторону (по часовой стрелке).
2. Выставляем на БП напряжение равное нижнему порогу включения и подаем его на разъемы Р2 (Bat ± или VCC± на плате). Реле не должно включиться! Иначе, нужно отключить источник питания, выкрутить резистор R4 (RP2 на плате) ещё немного влево, после чего повторить подключение к БП. Теперь, вращаем по часовой стрелке резистор R2 (RP1 на плате) пока не сработает реле (включение светодиода на модуле). Порог включения установлен!
3. Увеличиваем на БП напряжение до порога отключения (максимальное напряжение, при котором модуль должен отключить реле). Отключаем схему и выкручиваем R4 (RP2 на плате) вправо (почасовой стрелке). Подключаем модуль к БП. Реле должно быть включено (светодиод на модуле должен гореть). Вращаем R4 (RP2 на плате) влево, против часовой, пока реле не выключится (светодиод не горит). Таким образом настраивается верхний порог (выключение).
4. Настройка завершена. Плавно изменяя напряжение на БП можно проверить пороги вкл/выкл и скорректировать их, если необходимо.

Использование модулей в качестве контроллера заряда:
Схема подключения двух модулей к аккумуляторной батарее следующая:

-6

Оба модуля подключаем к аккумулятору через клеммы Р2 (Bat ± или VCC± на плате), но первый модуль подключаем к солнечной панели, а второй к нагрузке. У первого модуля устанавливаем напряжение включения равное 13.5В, напряжение отключения 13.8В. Такие настройки будут поддерживать напряжение аккумулятора при заряде не выше 13.8 вольта, что для свинцово-кислотного аккумулятора является оптимальным напряжением, при котором аккумулятор может находиться сколь угодно долгое время и быть заряженным на 100%. Использовать необходимо нормальноразомкнутые контакты.
У второго модуля устанавливаем напряжение включения 11 вольт, а напряжение отключения вольт 13, но использовать необходимо нормальнозамкнутые контакты, поэтому при напряжении на аккумуляторной батарее ниже 11 вольт нагрузка будет отключаться и включаться только при увеличении напряжения выше 13 вольт, т.е. в светлое время суток, когда идет заряд аккумулятора от солнечной панели. 11 вольт выбрано потому, что ниже этого напряжения разряжать аккумуляторную батарею опасно, т.к. может начаться сульфатация пластин.

Важные замечания:
Первое важное замечание я уже сделал выше, оно о выборе типа модуля: нужен с 3 клеммниками от реле.
Второе важное замечание: у модулей отсутствует диод гасящий ЭДС самоиндукции, который обычно включается палаллельно обмотке реле в обратном смещении. На схеме это диод D1. Ставить его обязательно!!! Оптимальное место — припаять прям на ножки реле с обратной стороны платы. Диод можно использовать самый распространенный 1N4007.

Видеоверсия:

Выводы:
С помощью недорогих модулей XH-M601 можно сэкономить на стоимости контроллера заряда при создании солнечной электростанции. Более того, дешевые контроллеры заряда не позволяют выбрать тип аккумуляторных батарей (пороговые напряжения включения/отключения), а значит контроллер заряда на данных модулях более универсальное решение, которое позволяет использовать не только свинцово-кислотные АКБ, но также и Li-Ion батареи, например. Однако как сэкономить на контроллере заряда Li-Ion батарей у меня есть еще один вариант, о котором я расскажу в следующий раз.

Ну что же, желаю всем добра! Да прибудет с нами Сила Солнечной Энергии!