Найти в Дзене
Математика не для всех

Удивительная точка Ферма в треугольнике, которая имеет наглядный физический смысл

Пьер Ферма - не только автор самой значимой в истории человечества заметки на полях книги, но и автор трактата «Введения к теории плоских и пространственных мест», в котором были заложены основы аналитической геометрии - направления математики, в котором геометрические объекты изучаются с точки зрения алгебры.

Источник: https://tatpin.ru/ris_m_GP/1302.jpg
Источник: https://tatpin.ru/ris_m_GP/1302.jpg
Естественно, не обошлось и без геометрических терминов, названных в честь великого француза.

Сегодня я расскажу Вам о том, как построить точку Ферма в произвольном треугольнике, и почему эта проблема имеет практическое применение.

Возьмем произвольный треугольник с условием, что наибольший его угол не превышает 120 градусов:

-2

Теперь возьмем в руки циркуль и построим на каждой стороне равносторонний треугольник:

-3

Из вершин полученных треугольников восстановим отрезки к противоположным вершинам, которые, ожидаемо, пересекутся в одной точке F:

Точку Ферма в англоязычной литературе так же называют изогоническим центром Х13. У каждого разностороннего треугольника так же есть и второй изогонический центр Х14, который в нашем случае будет лежать снаружи (его могут называть второй точкой Ферма). Оба изогонических центра называют точками Торричелли
Точку Ферма в англоязычной литературе так же называют изогоническим центром Х13. У каждого разностороннего треугольника так же есть и второй изогонический центр Х14, который в нашем случае будет лежать снаружи (его могут называть второй точкой Ферма). Оба изогонических центра называют точками Торричелли
Как Вы поняли, это и есть знаменитая точка Ферма.

Главное и самое замечательное её свойство в том, что сумма расстояний от неё до вершин треугольника минимальна, и каждая сторона видна из этой точки под углом 120 градусов:

-5

Когда речь идёт о тупоугольных треугольниках с углами больше 120 градусов, точка Ферма совпадает с вершиной тупого угла:

-6

Геометрические построения - это, конечно, хорошо, но физической натурной модели ничего не заменит.

Вот и в этом случае есть отличный пример:

Источник: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Ferma_Point_Experimental_Solution.png/440px-Ferma_Point_Experimental_Solution.png
Источник: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Ferma_Point_Experimental_Solution.png/440px-Ferma_Point_Experimental_Solution.png

Отметим на плоской гадкой горизонтальной поверхности точки A, B и C просверлим в отмеченных местах сквозные отверстия; свяжем три нити и пропустим сверху их свободные концы через отверстия; привяжем к свободным концам грузы одинаковой массы; когда система придет в равновесие, узел окажется в точке Ферма для треугольника ABC.

Спасибо за внимание! Ставьте "Нравится" этой публикации и подписывайтесь на канал!

Читайте также: